Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sensing Technologies and Automation for Precision Agriculture

  • Chapter
  • First Online:
Women in Precision Agriculture

Part of the book series: Women in Engineering and Science ((WES))

Abstract

This chapter begins by introducing the concept of precision agriculture and the impact of new technologies on the development and deployment of precision agriculture technologies. It then extensively reviews the sensing technologies commonly used in precision agriculture applications for crop, root, and soil monitoring. The chapter also reviewed platforms developed to implement field sensing tasks, including ground-based static platforms, ground-based mobile platforms, and aerial-based platforms. Two case studies using precision agriculture sensing technologies are finally presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, J.A., R.J. Jackson, A.R. Bentley, E. Ober, D.M. Wells, (2018). Field Phenotyping for the Future. Annual Plant Reviews, Issue 3.

    Google Scholar 

  • Atkinson, J. A., Pound, M. P., Bennett, M. J., & Wells, D. M. (2019). Uncovering the hidden half of plants using new advances in root phenotyping. Current Opinion in Biotechnology, 55, 1–8.

    Google Scholar 

  • Baker, J., III, Zhang, N., Sharon, J., Steeves, R., Wang, X., Wei, Y., & Poland, J. (2016). Development of a field-based high-throughput mobile phenotyping platform. Computers and Electronics in Agriculture, 122, 74–85.

    Google Scholar 

  • Bao, Y., Tang, L., Breitzman, M. W., Fernandez, M. G. S., Schnable, P. S. (2019). Field-based robotic phenotyping of sorghum plant architecture using stereo vision. Journal of Field Robotics, 36, 397–415.

    Google Scholar 

  • Bellvert, J., Marsal, J., Girona, J., & Zarco-Tejada, P. J. (2015). Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrigation Science, 33(2), 81–93.

    Google Scholar 

  • Bulanon, D. M., Kataoka, T., Okamoto, H., & Hata, S. (2004). Determining the 3-D location of the apple fruit during harvest. Automation technology for off-road equipment (ASAE Number: 701P1004). St. Joseph: The American Society of Agriculture Engineers.

    Google Scholar 

  • Crain, J. L., Wei, Y., Barker, J., III, Thompson, S. M., Alderman, P. D., Reynolds, M., Zhang, N., & Poland, J. (2016). Development and deployment of a portable field phenotyping platform. Crop Science, 56(3), 965–975.

    Google Scholar 

  • Dabas, M., Boisgontier, D., Tabbagh, J., & Brisard, A. (2000, July 16–19). Use of a new sub-metric multi-depth soil imaging system (MuCEp c). In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

  • Drummond, P. E., Christy, C. D., & Lund, E. D. (2000, July 16–19). Using an automated penetrometer and soil EC probe to characterize the rooting zone. In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

  • Dulaney, W. P., Daughtry, C. S. T., Walthall, C. L., Gish, T. J., Timlin, D. J., & Kung, K. J. S. (2000, July 16–19). Use of ground-penetrating radar and remotely sensed data to understand yield variability under drought conditions. In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

  • Dusschoten, D. V., Metzner, R., Kochs, J., Postma, J. A., Pflugfelder, D., & Bühler, J. (2016). Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 170(3), 1176–1188.

    Google Scholar 

  • Gibbons, G. (2000). Turning a farm art into science: An overview of precision farming. http://www.precisionfarming.com

  • Gomide, R. L., Inamasu, R. Y., Queiroz, D. M., Mantovani, E. C., & Santos, W. F. (2001). An automatic data acquisition and control mobile laboratory network for crop production systems data management and spatial variability studies in the Brazilian center-west region (ASAE Paper No.: 01-1046). St. Joseph: The American Society of Agriculture Engineers.

    Google Scholar 

  • Gonzalez-Dugo, V., Hernandez, P., Solis, I., & Zarco-Tejada, P. J. (2015). Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sensing, 2015(7), 13586–13605.

    Google Scholar 

  • Han, T., & Yan, F. K. (2018). Developing a system for three-dimensional quantification of root traits of rice seedlings. Computers and Electronics in Agriculture, 152, 90–100.

    Google Scholar 

  • Huisman, J. A., Sperl, C., Bouten, W., & Verstraten, J. M. (2001). Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology, 245(1), 48–58.

    Google Scholar 

  • Huisman, J. A., Snepvangers, J. J. J. C., Bouten, W., & Heuvelink, G. B. M. (2002). Mapping spatial variation in surface soil water content: Comparison of ground-penetrating radar and time domain reflectometry. Journal of Hydrology, 269(3), 194–207.

    Google Scholar 

  • Hummel, J. W., Sudduth, K. A., & Hollinger, S. E. (2001). Soil moisture and organic matter prediction of surface and subsurface soils using a NIR sensor. Computers and Electronics in Agriculture, 32, 149–165.

    Google Scholar 

  • Inoue, Y., Guérif, M., Baret, F., Skidmore, A., Gitelson, A., & Schlerf, M. (2016). Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant, Cell and Environment, 39(12), 2609–2623.

    Google Scholar 

  • Jackson, T., Mansfield, K., Saafi, M., Colman, T., & Romine, P. (2007). Measuring soil temperature and moisture using wireless MEMS sensors. Journal of Measurement, 41(4), 381–390.

    Google Scholar 

  • Jiang, N., Floro, E., Bray, A. L., Laws, B., Duncan, K. E., & Topp, C. N. (2018). High-resolution 4D spatiotemporal analysis of maize roots. The Plant Cell. https://doi.org/10.1101/381046.

  • Jones, C. L., Maness, N. O., Stone, M. L., & Jayasekara, R. (2004). Sonar and digital imagery for estimating crop biomass (ASABE Paper No. 043061). St. Joseph: The American Society of Agriculture Engineers.

    Google Scholar 

  • Kelleners, T. J., Soppe, R. W. O., Ayars, J. E., & Skagg, T. H. (2004). Calibration of capacitance probe sensors in a saline silty clay soil. Soil Science Society of America Journal, 68, 770–778.

    Google Scholar 

  • Koch, A., Meunier, F., Vanderborght, J., Garré, S., Pohlmeier, A., & Javaux, M. (2019). Functional–structural root-system model validation using a soil MRI experiment. Journal of Experimental Boltany, 70(10), 2797–2809.

    Google Scholar 

  • Lamb, D. W., Steyn-Ross, M., Schaare, P., Hanna, M. M., Silvester, W., & Steyn-Ross, A. (2002). Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations. International Journal of Remote Sensing, 23(18), 3619–3648.

    Google Scholar 

  • Lambot, S., Weihermüller, L., Huisman, J. A., Vereecken, H., Vanclooster, M., & Slob, E. C. (2006). Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resources Research, 42, W11403.

    Google Scholar 

  • Lee, N. (2016). High-throughput phenotyping of above and below ground elements of plants using feature detection, extraction and image analysis techniques. MSc thesis, Iowa State University.

    Google Scholar 

  • Li, Z., Wang, N., Taher, P., Godsey, C., Zhang, H., & Li, X. (2011). Practical deployment of an in-field soil property wireless sensor network. Computer Standards & Interfaces, 36(2), 278–287.

    Google Scholar 

  • Liu, W., Upadahyaya, S. K., Kataoka, T., & Shibusawa, S. (1996). Development of a texture/soil compaction sensor. In Proceedings of the 3rd international conference on precision agriculture (pp. 617–630). Minneapolis: American Society of Agronomy.

    Google Scholar 

  • Lobell, D. B., D. Thau, C. Seifert, E. Engle, B. Little, (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164: 324–333.

    Google Scholar 

  • Longchamps, L., & Khosla, R. (2014). Early detection of nitrogen variability in maize using fluorescence. Journal of Agronomy, 106(2), 511.

    Google Scholar 

  • Lund, E. D., Christy, C. D., & Drummond, P. E. (2000, July 16–19). Using yield and soil electrical conductivity (EC) maps to derive crop production performance information. In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

  • Maenhout, P., Sleutel, S., Xu, H., Hoorebeke, L. V., Cnudde, V., & Neve, S. D. (2019). Semi-automated segmentation and visualization of complex undisturbed root systems with X-ray μCT. Soil and Tillage Research, 192, 59–65.

    Google Scholar 

  • Mahan, J., & Wanjura, D. (2004). Upchurch, design and construction of a wireless infrared thermometry system. The USDA annual report. Project Number: 6208-21000-012-03. May 01, 2001–September 30, 2004.

    Google Scholar 

  • Myers, D. B., Kitchen, N. R., Miles, R. J., & Sudduth, K. A. (2000, July 16–19). Estimation of a soil productivity index on claypan soils using soil electrical conductivity. In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

  • Ondimu, S., & Murase, H. (2008). Water stress detection in Sunagoke moss (Rhacomitrium canescens) using combined thermal infrared and visible light imaging techniques. Biosystems Engineering, 100(1), 4–13.

    Google Scholar 

  • Pflugfelder, D., Metzner, R., Dusschoten, D. V., Reichel, R., Jahnke, S., & Koller, R. (2017). Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods, 13, 102.

    Google Scholar 

  • Pineros, M. A., Larson, B. G., Shaff, J. E., Schneider, D. J., Falcão, A. X., & Yuan, L. (2016). Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. Journal of Integrated Plant Biology, 58(3), 230–241.

    Google Scholar 

  • Prashar, A., & Jones, H. G. (2016). Assessing drought responses using thermal infrared imaging. Methods in Molecular Biology, 1398, 209–219.

    Google Scholar 

  • Qiu, Q., Sun, N., Bai, H., Wang, N., Fan, Z. Q., Wang, Y. J., Meng, Z. J., Li, B., & Cong, Y. (2019). Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “phenomobile”. Frontiers in Plant Science, 10, 554.

    Google Scholar 

  • Raper, T. B., & Varco, J. J. (2015). Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Journal of Precision Agriculture, 16(1), 62–76.

    Google Scholar 

  • Rogers, E. D., Monaenkova, D., Mijar, M., Nori, A., Goldman, D. I., & Benfey, P. N. (2016). X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiology, 171, 2028–2040.

    Google Scholar 

  • Rovira-Mas, F., Zhang, Q., & Reid, J. F. (2003). Stereo 3D crop maps from aerial images (ASABE Paper No. 031003). St. Joseph: The American Society of Agriculture Engineers.

    Google Scholar 

  • Saeys, W., Lenaerts, B., Craessaerts, G., & Baerdemaeker, J. D. (2009). Estimation of the crop density of small grains using Lidar sensors. Biosystems Engineering, 102, 22–30.

    Google Scholar 

  • Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, N. R., & Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112–123.

    Google Scholar 

  • Sharma, L. K., Bu, H., Franzen, D. W., & Denton, A. (2016). Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors. Computers and Electronics in Agriculture, 124, 254–262.

    Google Scholar 

  • Shi, Y., Wang, N., Taylor, R. K., Raun, W. R., & Hardin, J. A. (2013). Automatic corn plant location and spacing measurement using laser line-scan technique. Journal of Precision Agriculture, 4(5), 478–494.

    Google Scholar 

  • Shi, Y., Wang, N., Taylor, R. K., & Raun, W. R. (2015). Improvement of a ground-LiDAR-based corn plant population and spacing measurement system. Computers and Electronics in Agriculture, 112, 92–101.

    Google Scholar 

  • Shibusawa, S. (1998, October 20–22). Precision farming and terra-mechanics. In The 5th ISTVS Asia-Pacific regional conference. Korea.

    Google Scholar 

  • Shibusawa, S., Anom, W. S., Sato, H., & Sasao, A. (2000, July 16–19). On-line real-time soil spectrophotometer. In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

  • Sui, R., Thomasson, J., & Ge, Y. (2012). Development of sensor systems for precision agriculture in cotton. International Journal of Agricultural and Biological Engineering, 4(5), 1–14.

    Google Scholar 

  • Sui, R., Fisher, D. K., & Reddy, K. N. (2013). Cotton yield assessment using plant height mapping system. The Journal of Agricultural Science, 5(1), 23–31.

    Google Scholar 

  • Sun, Y., Wang, M., & Zhang, N. (1999). Measuring soil water content using the principle of standing-wave ratio (ASAE Paper No. 00-3127). St. Joseph: American Society of Agricultural Engineers.

    Google Scholar 

  • Swain, K. C., Zaman, Q. U., Schumann, A. W., & Percival, D. C. (2009). Detecting weed and bare-spot in wild blueberry using ultrasonic sensor technology (ASABE Paper No. 096879). St. Joseph: American Society of Agricultural Engineers.

    Google Scholar 

  • Symonova, O., Topp, C. N., & Edelsbrunner, H. (2015). DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One, 10(6), e0127657. https://doi.org/10.1371/journal.pone.0127657.

    Article  Google Scholar 

  • Thorp, K. R., Gore, M. A., Andrade-Sanchez, P., Carmo-Silva, A. E., Welch, S. M., White, J. W., & French, A. N. (2015). Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics. Computers and Electronics in Agriculture, 118, 225–236.

    Google Scholar 

  • Trachsel, S., Kaeppler, S. M., Brown, K. M., & Lynch, J. P. (2010). Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil, 341, 75–87.

    Google Scholar 

  • Ulissi, V., Antonucci, F., Benincasa, P., Farneselli, M., Tosti, G., & Guiducci, M. (2011). Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy. Sensors, 11(12), 6411–6424.

    Google Scholar 

  • Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry: Recent developments and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14.

    Google Scholar 

  • Wark, T., Corke, P., Sikka, P., Klingbeil, L., Guo, Y., Crossman, P., Valencia, P., Swain, D., & Bishop-Herley, G. (2007). Transforming agriculture through pervasive wireless sensor networks. Pervasive Computing, 6(2), 50–57.

    Google Scholar 

  • Wasaya, A., Zhang, X., Fang, Q., & Yan, Z. (2018). Root phenotyping for drought tolerance: A review. Journal of Agronomy, 8(11), 241.

    Google Scholar 

  • Wei, J., & Salyani, M. (2004). Development of a laser scanner for measuring tree canopy characteristics: Phase 1. Prototype development. Transactions of ASAE, 47(6), 2101–2107.

    Google Scholar 

  • Wei, J., & Salyani, M. (2005). Development of a laser scanner for measuring tree canopy characteristics: Phase 2. Foliage density measurement. Transactions of ASAE, 48(4), 1595–1601.

    Google Scholar 

  • Xia, C., Wang, L., Chung, B., & Lee, J. (2015). In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation. Sensors, 15(8), 20463–20479.

    Google Scholar 

  • Yang, J., Shi, S., Gong, W., Du, L., Ma, Y. Y., & Zhu, B. (2015). Application of fluorescence spectrum to precisely inverse paddy rice nitrogen content. Plant, Soil and Environment, 61(4), 182–188.

    Google Scholar 

  • Young, S. N., E. Kayacan, J.M. Peschel, (2018). Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Journal of Precision Agriculture, 20(4): 697–722.

    Google Scholar 

  • Yang, J., Gong, W., Shi, S., Du, L., Sun, J., & Song, S. (2016). Analysing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Scientific Reports, 6, 28787.

    Google Scholar 

  • Yuan, L., Z.Y. Bao, H.B. Zhang, Y.T. Zhang, X. Liang, (2017). Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery. Optik, 145: 66–73.

    Google Scholar 

  • Yuan, H., Bennett, R. S., Wang, N., & Chamberlin, K. D. (2019). Development of a peanut canopy measurement system using a ground-based LiDAR sensor. Frontiers in Plant Science, 10, 203.

    Google Scholar 

  • Zhang, N., & Taylor, R. (2000, July 16–19). Applications of a field-level geographic information system (FIS) in precision agriculture. In Proceedings of fifth international conference on precision agriculture (CD). Bloomington: American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, M., Wang, N., Chen , L. (2021). Sensing Technologies and Automation for Precision Agriculture. In: Hamrita, T. (eds) Women in Precision Agriculture. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-49244-1_2

Download citation

Publish with us

Policies and ethics