Abstract
The paper presents DLV, an advanced AI system from the area of Answer Set Programming (ASP), showing its high potential for reasoning over ontologies. Ontological reasoning services represent fundamental features in the development of the Semantic Web. Among them, scientists are focusing their attention on the so-called ontology-based query answering (OBQA) task where a (conjunctive) query has to be evaluated over a logical theory (a.k.a. Knowledge Base, or simply KB) consisting of an extensional database (a.k.a. ABox) paired with an ontology (a.k.a. TBox). From a theoretical viewpoint, much has been done. Indeed, Description logics and Datalog\(^\pm \) have been recognized as the two main families of formal ontology specification languages to specify KBs, while OWL has been identified as the official W3C standard language to physically represent and share them; moreover sophisticated algorithms and techniques have been proposed. Conversely, from a practical point of view, only a few systems for solving complex ontological reasoning services such as OBQA have been developed, and no official standard has been identified yet. The aim of the present paper is to illustrate the applicability of the well-known ASP system DLV for powerful ontology-based reasoning.
This work has been partially supported by Samsung under project “Enhancing the DLV system for large-scale ontology reasoning” (Ref. EHQ180906_0004).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See https://www.w3.org/.
- 2.
- 3.
Following Vardi’s taxonomy [41], the data complexity is calculated taking only the ABox as input, whereas the query and the TBox are considered fixed. The combined complexity is the complexity calculated considering as input, together with the ABox, also the query and the TBox.
- 4.
As usual in DLs, \(A \equiv B\) is a shortcut form \(A \sqsubseteq B\) together with \(B \sqsubseteq A\).
- 5.
The Adolena (Abilities and Disabilities OntoLogy for ENhancing Accessibility) ontology [31] has been developed for the South African National Accessibility Portal. It describes abilities, disabilities and devices.
- 6.
StockExchange [38] is an ontology of the domain of financial institution in the EU.
- 7.
Path5 is a synthetic ontology [38] encoding graph structures, and used to generate an exponential blow-up of the size of the rewritten queries.
- 8.
Galen is an open source medical ontology that is widely used as stress test for OBQA systems since its TBox consists of about 50k/60k axioms. For more details, see https://bioportal.bioontology.org/ontologies/GALEN.
- 9.
NPD FactPages is an ontology describing the petroleum activities in the Norwegian continental shelf.
- 10.
Vicodà is an ontology of European history which falls in OWL 2 RL, developed within the Vicodì project. For more details, see https://cordis.europa.eu/result/rcn/34582_en.html.
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995). http://webdam.inria.fr/Alice/
Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_19
Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 40–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_5
Alviano, M., Leone, N., Manna, M., Terracina, G., Veltri, P.: Magic-sets for datalog with existential quantifiers. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 31–43. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32925-8_5
Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/0372.pdf
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011). https://doi.org/10.1016/j.artint.2011.03.002
Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. Log. Methods Comput. Sci. 10(2) (2014). https://doi.org/10.2168/LMCS-10(2:3)2014
Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: a study through disjunctive datalog, CSP, and MMSNP. ACM Trans. Database Syst. 39(4), 33:1–33:44 (2014). https://doi.org/10.1145/2661643
Bourhis, P., Manna, M., Morak, M., Pieris, A.: Guarded-based disjunctive tuple-generating dependencies. ACM Trans. Database Syst. 41(4), 27:1–27:45 (2016). https://doi.org/10.1145/2976736
Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and - what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 298–302. IOS Press, Amsterdam (2004)
Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195
Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013). https://doi.org/10.1613/jair.3873
Calì, A., Gottlob, G., Lukasiewicz, T.: Tractable query answering over ontologies with datalog\(^\pm \). In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL). CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009). http://ceur-ws.org/Vol-477/paper_46.pdf
Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012). https://doi.org/10.1016/j.websem.2012.03.001
Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_37
Calimeri, F., Fuscà , D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder of DLV. Intell. Artif. 11(1), 5–20 (2017). https://doi.org/10.3233/IA-170104
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013). https://doi.org/10.1016/j.artint.2012.10.003
Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the magic-set method for disjunctive datalog programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 371–385. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_26
Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22(3), 364–418 (1997). https://doi.org/10.1145/261124.261126
Faber, W., Leone, N., Ricca, F.: Answer set programming. In: Wah, B.W. (ed.) Wiley Encyclopedia of Computer Science and Engineering. Wiley, Hoboken (2008). https://doi.org/10.1002/9780470050118.ecse226
Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of aggregate functions in the DLV system. TPLP 8(5–6), 545–580 (2008). https://doi.org/10.1017/S1471068408003323
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/BF03037169
Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.: The price of query rewriting in ontology-based data access. Artif. Intell. 213, 42–59 (2014). https://doi.org/10.1016/j.artint.2014.04.004
Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological databases. ACM Trans. Database Syst. 39(3), 25:1–25:46 (2014). https://doi.org/10.1145/2638546
Gottlob, G., Pieris, A., Tendera, L.: Querying the guarded fragment with transitivity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 287–298. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_27
Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Hencsey, G., White, B., Chen, Y.R., Kovács, L., Lawrence, S. (eds.) Proceedings of the Twelfth International World Wide Web Conference (WWW), pp. 48–57. ACM (2003). https://doi.org/10.1145/775152.775160
Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3(2–3), 158–182 (2005). https://doi.org/10.1016/j.websem.2005.06.005
Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 466–471. Professional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/0326.pdf
Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984). https://doi.org/10.1016/0022-0000(84)90081-3
Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G.: Enhancing web portals with ontology-based data access: the case study of South Africa’s accessibility portal for people with disabilities. In: Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings of the Fifth Workshop on OWL: Experiences and Directions (OWLED). CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008). http://ceur-ws.org/Vol-432/owled2008eu_submission_7.pdf
Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and guardedness. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 963–968. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-166
Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable datalog\(^\exists \) programs. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (KR). AAAI Press (2012). http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4521
Leone, N., et al.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006). https://doi.org/10.1145/1149114.1149117
Maratea, M., Ricca, F., Veltri, P.: DLVMC: enhanced model checking in DLV. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 365–368. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5_33
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1
Ortiz, M.: Ontology based query answering: the story so far. In: Bravo, L., Lenzerini, M. (eds.) Proceedings of the 7th Alberto Mendelzon International Workshop on Foundations of Data Management (AMW). CEUR Workshop Proceedings, vol. 1087. CEUR-WS.org (2013). http://ceur-ws.org/Vol-1087/keynote3.pdf
Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under description logic constraints. J. Appl. Logic 8(2), 186–209 (2010). https://doi.org/10.1016/j.jal.2009.09.004
Rosati, R.: The limits of querying ontologies. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 164–178. Springer, Heidelberg (2006). https://doi.org/10.1007/11965893_12
Rosati, R., Almatelli, A.: Improving query answering over dl-lite ontologies. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning (KR). AAAI Press (2010). http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1400
Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC), pp. 137–146. ACM (1982). https://doi.org/10.1145/800070.802186
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Allocca, C. et al. (2020). Reasoning over Ontologies with DLV. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2018. Communications in Computer and Information Science, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-49559-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-49559-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49558-9
Online ISBN: 978-3-030-49559-6
eBook Packages: Computer ScienceComputer Science (R0)