Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Contributions to a Quantitative Unsupervised Processing and Analysis of Tongue in Ultrasound Images

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Abstract

Speech production studies and the knowledge they bring forward are of paramount importance to advance a wide range of areas including Phonetics, speech therapy, synthesis and interaction. Several technologies have been considered to study static and dynamic features of the articulators and speech motor control, such as electromagnetic articulography (EMA), real-time magnetic resonance (RTMRI) and ultrasound (US) imaging. While the latest advances in RTMRI provide a wealth of data of the full vocal tract, it is an expensive resource that requires specialized facilities. In this sense, US is a more affordable alternative for several contexts, enabling the acquisition of larger datasets, but demands adequate computational approaches for processing and analysis. While the literature is prolific in proposing methods for tongue segmentation from US, the noisy nature of the images and the specificities of the equipment often dictate a poor performance on novel datasets, a matter that needs to be assessed, before large data acquisition, to devise suitable acquisition and processing methods. In the scope of a line of research studying speech changes with age, this work describes the first results of an automatic tongue segmentation method from US, along with a characterization of the main challenges posed by the image data. Even though improvements are still needed, particularly to ensure temporal coherence, at its current stage, this method can already provide the required data for an automatic analysis of maximum tongue height, a relevant parameter to assess speech changes on vowel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akgul, Y.S., Stone, C., Maureen, K.: Automatic extraction and tracking of contours. Trans. Med. Imaging 18(10), 1035–1045 (1999)

    Article  Google Scholar 

  2. Articulate Assistant Ltd.: Articulate Assistant Advanced Ultrasound Module User Manual (2014)

    Google Scholar 

  3. Articulate Instruments Ltd.: Ultrasound Stabilisation Headset Users Manual (2008)

    Google Scholar 

  4. Articulate Instruments Ltd.: SyncBrightUp Users Manual (2010)

    Google Scholar 

  5. Chen, Y., Lin, H.: Analysing tongue shape and movement in vowel production Using SS ANOVA in ultrasound imaging. In: ICPhS, pp. 124–127 (2011)

    Google Scholar 

  6. Csapó, T.G., Lulich, S.M.: Error analysis of extracted tongue contours from 2D ultrasound images. In: INTERSPEECH, pp. 2157–2161. ISCA, Dresden (2015)

    Google Scholar 

  7. Dokovova, M., Sabev, M., Scobbie, J.M., Lickley, R., Cowen, S.: Bulgarian vowel reduction in unstressed position: an ultrasound and acoustic investigation. In: 19th ICPhS, pp. 2720–2724 (2019)

    Google Scholar 

  8. Fabre, D., Hueber, T., Bocquelet, F., Badin, P.: Tongue tracking in ultrasound images using EigenTongue decomposition and artificial neural networks. In: INTERSPEECH, pp. 2410–2414. ISCA, Dresden (2015)

    Google Scholar 

  9. Fabre, D., Hueber, T., Girin, L., Alameda-Pineda, X., Badin, P.: Automatic animation of an articulatory tongue model from ultrasound images of the vocal tract. Speech Commun. 93, 63–75 (2017). https://doi.org/10.1016/j.specom.2017.08.002

    Article  Google Scholar 

  10. Fasel, I., Berry, J.: Deep belief networks for real-time extraction of tongue contours from ultrasound during speech. In: International Conference on Pattern Recognition, pp. 1493–1496 (2010). https://doi.org/10.1109/ICPR.2010.369

  11. Georgeton, L., Antolík, T.K., Fougeron, C.: Effect of domain initial strengthening on vowel height and backness contrasts in French: acoustic and ultrasound data. JSLHR 59(6), S1575–S1586 (2016)

    Google Scholar 

  12. Georgeton, L., Kocjančič Antolík, T., Fougeron, C.: Domain initial strengthening and height contrast in French: acoustic and ultrasound data. In: 10th ISSP, Cologne, pp. 142–145 (2014). https://halshs.archives-ouvertes.fr/halshs-01401388

  13. Hall, K.C., Allen, C., Mcmullin, K., Letawsky, V., Turner, A.: Measuring magnitude of tongue movement for vowel height and backness. In: ICPhS (2015)

    Google Scholar 

  14. Hillenbrand, J., Getty, L.A., Clark, M., Wheeler, K.: Acoustic characteristics of American English vowels. J. Acoust. Soc. Am. 97(5), 3099–3111 (1995). http://ukpmc.ac.uk/abstract/MED/7759650

    Article  Google Scholar 

  15. Jaumard-Hakoun, A., Xu, K., Roussel-ragot, P., Stone, M.L.: Tongue contour extraction from ultrasound images. In: 18th International Congress of Phonetic Sciences (ICPhS) (2015)

    Google Scholar 

  16. Karimi, E., Ménard, L., Laporte, C.: Fully-automated tongue detection in ultrasound images. Comput. Biol. Med. 111(103335), 1–13 (2019). https://doi.org/10.1016/j.compbiomed.2019.103335

    Article  Google Scholar 

  17. Kirkham, S., Nance, C.: An acoustic-articulatory study of bilingual vowel production: advanced tongue root vowels in Twi and tense/lax vowels in Ghanaian English. J. Phon. 62, 65–81 (2017)

    Article  Google Scholar 

  18. Kisler, T., Reichel, U., Schiel, F.: Multilingual processing of speech via web services. Comput. Speech Lang. 45, 326–347 (2017). https://doi.org/10.1016/j.csl.2017.01.005

    Article  Google Scholar 

  19. Kovesi, P., et al.: Symmetry and asymmetry from local phase. In: Tenth Australian Joint Conference on Artificial Intelligence, vol. 190, pp. 2–4. Citeseer (1997)

    Google Scholar 

  20. Lancia, L., Rausch, P., Morris, J.S.: Automatic quantitative analysis of ultrasound tongue contours via wavelet-based functional mixed models. J. Acoust. Soc. Am. 137(2), EL178–EL183 (2015). https://doi.org/10.1121/1.4905881

    Article  Google Scholar 

  21. Laporte, C., Ménard, L.: Robust tongue tracking in ultrasound images: a multi-hypothesis approach. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pp. 633–637 (2015)

    Google Scholar 

  22. Laporte, C., Ménard, L.: Multi-hypothesis tracking of the tongue surface in ultrasound video recordings of normal and impaired speech. Med. Image Anal. 44, 98–114 (2018). https://doi.org/10.1016/j.media.2017.12.003

    Article  Google Scholar 

  23. Lee, S.H., Yu, J.F., Hsieh, Y.H., Lee, G.S.: Relationships between formant frequencies of sustained vowels and tongue contours measured by ultrasonography. Am. J. Speech Lang. Pathol. 24(4), 739–749 (2015)

    Article  Google Scholar 

  24. Li, M., Kambhamettu, C., Stone, M.: Automatic contour tracking in ultrasound images. Clin. Linguist. Phon. 19(6–7), 545–554 (2005)

    Article  Google Scholar 

  25. Morrison, G.S., Assmann, P.F.: Vowel Inherent Spectral Change: Modern Acoustics and Signal Processing. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-14209-3

    Book  Google Scholar 

  26. Mozaffari, M.H., Lee, W.S.: Domain adaptation for ultrasound tongue contour extraction using transfer learning: a deep learning approach. J. Acoust. Soc. Am. 146(5), EL431–EL437 (2019). https://doi.org/10.1121/1.5133665

    Article  Google Scholar 

  27. Mozaffari, M.H., Wen, S., Wang, N., Lee, W.: Real-time automatic tongue contour tracking in ultrasound video for guided pronunciation training. In: 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), vol. 1, pp. 302–309 (2019). https://doi.org/10.5220/0007523503020309

  28. Muldal, A.: Python-phasepack (2016). https://github.com/alimuldal/phasepack

  29. Noble, A., et al.: Ultrasound image segmentation : a survey. IEEE Trans. Med. Imaging 25, 987–1010 (2006)

    Article  Google Scholar 

  30. Song, J.Y.: The use of ultrasound in the study of articulatory properties of vowels in clear speech. Clin. Linguist. Phon. 31(5), 351–374 (2017). https://doi.org/10.1080/02699206.2016.1268207

    Article  Google Scholar 

  31. Stone, M.: A guide to analysing tongue motion from ultrasound images. Clin. Linguist. Phon. 19(6–7), 455–501 (2005). https://doi.org/10.1080/02699200500113558

    Article  Google Scholar 

  32. Tang, L., Bressmann, T., Hamarneh, G.: Tongue contour tracking in dynamic ultrasound via higher-order MRFs and efficient fusion moves. Med. Image Anal. 16(8), 1503–1520 (2012). https://doi.org/10.1016/j.media.2012.07.001

    Article  Google Scholar 

  33. Tang, L., Hamarneh, G.: Graph-based tracking of the tongue contour in ultrasound sequences with adaptive temporal regularization. In: Computer Society Conference on Computer Vision and Pattern Recognition - Workshops (CVPRW 2010), pp. 154–161. IEEE (2010). https://doi.org/10.1109/CVPRW.2010.5543597

  34. Unser, M., Stone, M.: Automated detection of the tongue surface in sequences of ultrasound images. J. Acoust. Soc. Am. 91(5), 3001–3007 (1992). https://doi.org/10.1121/1.402934

    Article  Google Scholar 

  35. Wang, H., Wang, S., Denby, B., Dang, J.: Automatic tongue contour tracking in ultrasound sequences without manual initialization. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 200–203. IEEE (2015). https://doi.org/10.1109/APSIPA.2015.7415503

  36. Wen, S.: Automatic tongue contour segmentation using deep learning. Master of Applied Science in Electrical and Computer Engineering, University of Otawa (2018)

    Google Scholar 

  37. Xu, K., et al.: Robust contour tracking in ultrasound tongue image sequences. Clin. Linguist. Phon. 30(3–5), 313–327 (2016). https://doi.org/10.3109/02699206.2015.1110714

    Article  Google Scholar 

  38. Zhu, J., Styler, W., Calloway, I.: Automatic tongue contour extraction in ultrasound images with convolutional neural networks. J. Acoust. Soc. Am. 143(3), 1966 (2018). https://doi.org/10.1121/1.5036466

    Article  Google Scholar 

  39. Zhu, J., Styler, W., Calloway, I.: A CNN-based tool for automatic tongue contour tracking in ultrasound images. eprint arXiv:1907.10210, pp. 1–6 (2019)

Download references

Acknowledgements

This research was financially supported by the projects VoxSenes (POCI-01-0145-FEDER-03082) and MEMNON (POCI-01-0145-FEDER-028976) – COMPETE2020 under POCI and FEDER, and by national funds (OE), through FCT/MCTES, SOCA – Smart Open Campus CENTRO-01-0145-FEDER-000010 (Portugal 2020 under POCI and FEDER) and by IEETA Research Unit funding (UIDB/00127/2020). Luciana Albuquerque’s work is funded by the FCT through grant SFRH/BD/115381/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barros, F., Valente, A.R., Albuquerque, L., Silva, S., Teixeira, A., Oliveira, C. (2020). Contributions to a Quantitative Unsupervised Processing and Analysis of Tongue in Ultrasound Images. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics