Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Router for Qutrit Networks

  • Conference paper
  • First Online:
Computer Networks (CN 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1231))

Included in the following conference series:

Abstract

Networks of quantum circuits or, more generally, networks transmitting quantum information will need, just like classical networks (e.g. internet), a mechanism for directing data to adequate nodes. Routing, understood as packet switching, is one of the most important processes in classical networks. The issue of routing is also present in quantum networks and an appropriate construction of a quantum router is required to transfer data to specific points in the network. We describe an implementation of a router for qutrits in this chapter. The router is four-qutrit quantum circuit (with one controlling unit). The efficiency and the accuracy of router’s work is tested by the Fidelity measure. The circuit’s dynamics is expressed by a Hamiltonian where the role of generalized Pauli operators is played by the Gell-Mann operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. arXiv:1712.00854 [quant-ph] (2017)

  2. Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18(11), 1–13 (2019). https://doi.org/10.1007/s11128-019-2436-x

    Article  Google Scholar 

  3. Bergmann, M., van Loock, P.: Hybrid quantum repeater for qudits. Phys. Rev. A 99, 032349 (2019)

    Article  Google Scholar 

  4. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  Google Scholar 

  5. Bruderer, M., Franke, K., Ragg, S., Belzig, W., Obreschkow, D.: Exploiting boundary states of imperfect spin chains for high-fidelity state transfer. Phys. Rev. A 85, 022312 (2012)

    Article  Google Scholar 

  6. Caleffi, M.: Optimal routing for quantum networks. IEEE Access 5, 22299–22312 (2017)

    Article  Google Scholar 

  7. Christensen, K.S., Rasmussen, S.E., Petrosyan, D., Zinner, N.T.: Coherent router for quantum networks with superconducting qubits. Phys. Rev. Res. 2, 013004 (2020)

    Article  Google Scholar 

  8. Dahlberg, A., Wehner, S.: SimulaQron—a simulator for developing quantum Internet software. Quantum Sci. Technol. 4(1), 015001 (2018). https://doi.org/10.1088/2058-9565/aad56e

    Article  Google Scholar 

  9. Diadamo, S., Nözel, J., Zanger, B., Bese, M.M.: QuNetSim: a software framework for quantum networks. arXiv:abs/2003.06397 (2020)

  10. Diadamo, S., Nözel, J., Zanger, B., Bese, M.M.: Github repository (2020). https://github.com/tqsd/QuNetSim

  11. Domino, K., Gawron, P.: An algorithm for arbitrary-order cumulant tensor calculation in a sliding window of data streams. Int. J. Appl. Math. Comput. Sci. 29(1), 195–206 (2019)

    Article  MathSciNet  Google Scholar 

  12. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  Google Scholar 

  13. Erhard, M., Malik, M., Zeilinger, A.: A quantum router for high-dimensional entanglement. Quantum Sci. Technol. 2(1), 014001 (2017). https://doi.org/10.1088/2058-9565/aa5917

    Article  Google Scholar 

  14. Goswami, K., et al.: Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018)

    Article  Google Scholar 

  15. Gyongyosi, L., Imre, S.: Entanglement-gradient routing for quantum networks. Sci. Rep. 7, 14255 (2017)

    Article  Google Scholar 

  16. Hahn, F., Pappa, A., Eisert, J.: Quantum network routing and local complementation. npj Quantum Inf. 5, 76 (2019)

    Article  Google Scholar 

  17. Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer, New York (2003). https://doi.org/10.1007/978-3-319-13467-3

    Book  MATH  Google Scholar 

  18. Hu, C.: Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)

    Article  Google Scholar 

  19. Jankowski, N., Linowiecki, R.: A fast neural network learning algorithm with approximate singular value decomposition. Int. J. Appl. Math. Comput. Sci. 29(3), 581–594 (2019)

    Article  MathSciNet  Google Scholar 

  20. Luo, Y.H., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019)

    Article  Google Scholar 

  21. Marchukov, O., Volosniev, A., Valiente, M., et al.: Quantum spin transistor with a Heisenberg spin chain. Nat. Commun. 7, 13070 (2016)

    Article  Google Scholar 

  22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Pant, M., Krovi, H., Towsley, D., et al.: Routing entanglement in the quantum Internet. npj Quantum Inf. 5, 25 (2019)

    Article  Google Scholar 

  24. Pedersen, L.H., Møller, N.M., Mølmer, K.: Fidelity of quantum operations. Phys. Lett. 384 A 367, 47–51 (2007)

    Article  MathSciNet  Google Scholar 

  25. Plenio, M.B., Hartley, J., Eisert, J.: Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6(1), 36 (2004)

    Article  Google Scholar 

  26. Rasmussen, S.E., Christensen, K.S., Zinner, N.T.: Controllable two-qubit swapping gate using superconducting circuits. Phys. Rev. B 99, 134508 (2019)

    Article  Google Scholar 

  27. Van Meter, R.: Quantum Networking. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118648919

    Book  MATH  Google Scholar 

  28. Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., Dür, W.: Two-dimensional quantum repeaters. Phys. Rev. A 94, 052307 (2016)

    Article  Google Scholar 

  29. Wang, M., Chen, X., Luo, S., et al.: Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Inf. Process. 11, 1715–1739 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zhukov, A.A., Kiktenko, E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Y.E.: Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Process. 18(1), 1–23 (2018). https://doi.org/10.1007/s11128-018-2144-y

    Article  MATH  Google Scholar 

  31. Zwerger, M., Lanyon, B.P., Northup, T.E., Muschik, C.A., Dür, W., Sangouard, N.: Quantum repeaters based on trapped ions with decoherence-free subspace encoding. Quantum Sci. Technol. 2(4), 044001 (2017). https://doi.org/10.1088/2058-9565/aa7983

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank for useful discussions with the Q-INFO group at the Institute of Control and Computation Engineering (ISSI) of the University of Zielona Góra, Poland. We would like also to thank to anonymous referees for useful comments on the preliminary version of this chapter. The numerical results were done using the hardware and software available at the “GPU \(\mu \)-Lab” located at the Institute of Control and Computation Engineering of the University of Zielona Góra, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Sawerwain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sawerwain, M., Wiśniewska, J. (2020). Quantum Router for Qutrit Networks. In: Gaj, P., Gumiński, W., Kwiecień, A. (eds) Computer Networks. CN 2020. Communications in Computer and Information Science, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-50719-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50719-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50718-3

  • Online ISBN: 978-3-030-50719-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics