Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analyzing Elementary School Olympiad Math Tasks as a Benchmark for AGI

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12177))

Included in the following conference series:

  • 1374 Accesses

Abstract

Many benchmarks and challenges for AI and AGI exist, which help to reveal both short- and long-term topics and directions of research. We analyze elementary school Olympiad math tasks as a possible benchmark for AGI that can occupy a certain free niche capturing some limitations of the existing neural and symbolic systems better than other existing both language understanding and mathematical tests. A detailed comparison and analysis of implications of AGI is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.general-ai-challenge.org/.

  2. 2.

    https://leaderboard.allenai.org/winogrande/.

  3. 3.

    https://github.com/IMO-grand-challenge/.

  4. 4.

    http://geometry.allenai.org/.

References

  1. Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proceedings of the International Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)

    Google Scholar 

  2. Goertzel, B.: Artificial general intelligence: concept, state of the art, and future prospects. J. Artif. Gen. Intell. 5(1), 1–48 (2014)

    Article  Google Scholar 

  3. Hernández-Orallo, J., Martínez-Plumed, F., Schmid, U., Siebers, M., Dowe, D.L.: Computer models solving intelligence test problems: progress and implications. Artif. Intell. 230, 74–107 (2016)

    Article  MathSciNet  Google Scholar 

  4. Agrawal, A., et al.: Don’t just assume; look and answer: overcoming priors for visual question answering. In: Proceedings of IEEE Conference on CVPR, pp. 4971–4980 (2018)

    Google Scholar 

  5. Johnson, J., et al.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. arXiv preprint arXiv:1612.06890 (2016)

  6. Chesani, F., Mello, P., Milano, M.: Solving mathematical puzzles: a challenging competition for AI. AI Mag. 38(3), 83–94 (2017)

    Article  Google Scholar 

  7. Ackerman, E.: Can winograd schemas replace turing test for defining human-level AI? IEEE Spectrum (2014)

    Google Scholar 

  8. Wang, A., et al.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 (2018)

  9. Clark, P.: Elementary school science and math tests as a driver for AI: take the Aristo challenge! In: Twenty-Seventh IAAI Conference (2015)

    Google Scholar 

  10. Clark, P., et al.: From ‘F’ to ‘A’ on the N.Y. regents science exams: an overview of the aristo project. arXiv preprint arXiv:1909.01958 (2019)

  11. Wang, A.: SuperGLUE: a stickier benchmark for general-purpose language understanding systems. arXiv preprint arXiv:1905.00537 (2019)

  12. Hudson, D.A., Manning, Ch.D.: GQA: a new dataset for real-world visual reasoning and compositional question answering. arXiv preprint arXiv:1902.09506 (2019)

  13. Weitnauer, E., Ritter, H.: Physical bongard problems. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2012. IAICT, vol. 381, pp. 157–163. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33409-2_17

    Chapter  Google Scholar 

  14. Klenk, M., Forbus, K.: Analogical model formulation for transfer learning in AP physics. Artif. Intell. 173(18), 1615–1638 (2009)

    Article  MathSciNet  Google Scholar 

  15. Sloman, A.: Kantian philosophy of mathematics and young robots. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) CICM 2008. LNCS (LNAI), vol. 5144, pp. 558–573. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85110-3_45

    Chapter  MATH  Google Scholar 

  16. Saxton, D., Grefenstette, E., Hill, F., Kohli, P.: Analysing mathematical reasoning abilities of neural models. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=H1gR5iR5FX

  17. Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)

    Article  Google Scholar 

  18. Schlag, I., et al.: Enhancing the transformer with explicit relational encoding for math problem solving. arXiv preprint arXiv:1910.06611 (2019)

  19. Seo, M., et al.: Solving geometry problems: combining text and diagram interpretation. In: Proceedings Conference on Empirical Methods in Natural Language Processing, pp. 1466–1476 (2015)

    Google Scholar 

  20. Hosseini, M., Hajishirzi, H., Etzioni, O., Kushman, N.: Learning to solve arithmetic word problems with verb categorization. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 523–533 (2014)

    Google Scholar 

  21. Hopkins, M., et al.: SemEval 2019 task 10: math question answering. In: Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pp. 893–899 (2019)

    Google Scholar 

  22. Mitra, A., Baral, C.: Learning to automatically solve logic grid puzzles. In: Proceedings Conference on Empirical Methods in Natural Language Processing, pp. 1023–1033 (2015)

    Google Scholar 

  23. Sachan, M., Xing, E.: Learning to solve geometry problems from natural language demonstrations in textbooks. In: Proceedings of the 6th Joint Conference on Lexical and Computational Semantics, pp. 251–261 (2017)

    Google Scholar 

  24. Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. arXiv:2002.06177 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Potapov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potapov, A. et al. (2020). Analyzing Elementary School Olympiad Math Tasks as a Benchmark for AGI. In: Goertzel, B., Panov, A., Potapov, A., Yampolskiy, R. (eds) Artificial General Intelligence. AGI 2020. Lecture Notes in Computer Science(), vol 12177. Springer, Cham. https://doi.org/10.1007/978-3-030-52152-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52152-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52151-6

  • Online ISBN: 978-3-030-52152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics