Abstract
Our recent research finding produces methods for automatic extraction of inventive information out of patents thanks to the use NLP; notably the automatic text processing. However, these methods have drawbacks due to a high amount of noise (duplicates, errors) in the output result that prevent the further use of TRIZ methodology. In the mean-time, we observed that patent claims are the most important source for inventive information. These text paragraphs have nevertheless a dual nature (combining legal and technical vocabulary) and this nature engender part of the observed noise. We postulate that taking into consideration claims hierarchical structure and its structural information can reduce the time for extraction and refine the final output quality, which is the principal aim of the paper. In this paper, we report on the methodology we have employed based on the patent claim structure recognition as a way to address our objectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Parker, J.P., Begnaud, L.G.: Developing Creative Leadership. Libraries Unlimited, Westport (2004)
Dalkey, N.C., Helmer-Hirschberg, O.: An Experimental Application of the Delphi Method to the Use of Experts (1962). https://www.rand.org/pubs/research_memoranda/RM727z1.html. Accessed 09 Apr 2019
Prince, G.M.: The Practice of Creativity: A Manual for Dynamic Group Problem Solving. Collier Books, New York (1972)
Aльтшyллep, Г.: Haйти идeю: Bвeдeниe в TPИЗ—тeopию peшeния изoбpeтaтeльcкиx зaдaч. Aльпинa Пaблишep (2008)
European Patent Office: Guidelines for Examination in the European Patent Office (2018)
Tanaka, M., Saito, H.: Transport hose with leak detecting structure, US 4259553A, 31 March 1981
Cavallucci, D. (ed.): TRIZ — The Theory of Inventive Problem Solving: Current Research and Trends in French Academic Institutions. Springer, Cham (2017)
Cavallucci, D.: From TRIZ to Inventive Design Method (IDM): towards a formalization of Inventive Practices in R&D Departments (2012)
Rousselot, F., Zanni-Merk, C., Cavallucci, D.: Towards a formal definition of contradiction in inventive design. Comput. Ind. 63(3), 231–242 (2012)
Cavallucci, D., Rousselot, F., Zanni, C.: Initial situation analysis through problem graph. CIRP J. Manuf. Sci. Technol. 2(4), 310–317 (2010)
Guyot, B., Normand, S.: Le document brevet, un passage entre plusieurs mondes. Document et organisation, Paris (2004)
Bonino D., Ciaramella A., Corno, F.: Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0172219009000465. Accessed 10 Apr 2019
Souili, A.W.M.: Contribution à la Méthode de conception inventive par l’extraction automatique de connaissances des textes de brevets d’invention’, Université de Strasbourg, École Doctorale Mathématiques, Sciences de l’Information et de l’Ingénieur Laboratoire de Génie de la Conception (LGéCo) – INSA de Strasbourg (2015)
Espacenet Patent search: worldwide.espacenet. https://worldwide.espacenet.com/. Accessed 10 Apr 2019
Questel: Orbit Intellixir, Questel, 2019. https://www.questel.com/software/orbit-intellixir/. Accessed 11 Apr 2019
Patent Research & Analysis Software| LexisNexis TotalPatent OneTM, LexisNexis® IP
Information Retrieval Facility. http://www.ir-facility.org/. Accessed 22 Mar 2019
Advanced patent document processing techniques| Projects| FP6| CORDIS| European Commission. https://cordis.europa.eu/project/rcn/79394/factsheet/en. Accessed 11 Apr 2019
BRUGMANN SOFTWARE GMBH, iPatDoc (2013)
Sheremetyeva, S.: Natural language analysis of patent claims. In: Proceedings of the ACL-2003 workshop on Patent corpus processing—Not Known, vol. 20, pp. 66–73 (2003)
Shinmori, A., Okumura, M.: Aligning patent claims with detailed descriptions for readability. In: Proceedings Fourth NTCIR Workshop, vol. 12, no. 3, pp. 111–128, July 2005
Parapatics, P., Dittenbach, M.: Patent Claim Decomposition for Improved Information Extraction, ResearchGate (2011). https://www.researchgate.net/publication/226411853_Patent_Claim_Decomposition_for_Improved_Information_Extraction. Accessed 11 Apr 2019
Verberne, S., D’hondt, E., Oostdijk, N.: Quantifying the challenges in parsing patent claims, ResearchGate (2010). https://www.researchgate.net/publication/228739952_Quantifying_the_challenges_in_parsing_patent_claims. Accessed 11 Apr 2019
D’hondt, E., Verberne, S., Alink, W., Cornacchia, R.: Combining document representations for prior-art retrieval, p. 9 (2011)
Yang, S.-Y., Soo, V.-W.: Extract conceptual graphs from plain texts in patent claims. Eng. Appl. Artif. Intell. 25(4), 874–887 (2012)
Hackl-Sommer, R., Schwantner, M.: Patent claim structure recognition, Arch. Data Sci. Ser. A (Online First) (2017). https://publikationen.bibliothek.kit.edu/1000069936. Accessed 11 Apr 2019
Souili, A., Cavallucci, D.: Automated extraction of knowledge useful to populate inventive design ontology from patents. In: Cavallucci, D. (ed.) TRIZ—The Theory of Inventive Problem Solving, pp. 43–62. Springer, Cham (2017)
Souili, A., Cavallucci, D., Rousselot, F.: A lexico-syntactic pattern matching method to extract Idm—Triz knowledge from on-line patent databases. Proc. Eng. 131, 418–425 (2015)
Salton, G., Yang, C.S.: On the Specification of Term Values in Automatic Indexing, June 1973
Anthony, L.: AntConc. Tokyo, Japan: Waseda University (2019)
Bennett, B.E.: Seals with integrated leak progression detection capability, US 7316154B1, 08 January 2008
Zhou, M., Huang, J.-X., Huang, C.N.T., Wang, W.: Example based machine translation system, US 7353165B2, 01 April 2008
Sunkara, M.K.: Sealing ring with electrochemical sensing electrode, US5865971A, 02 February 1999
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Berduygina, D., Cavallucci, D. (2020). Improvement of Automatic Extraction of Inventive Information with Patent Claims Structure Recognition. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1229. Springer, Cham. https://doi.org/10.1007/978-3-030-52246-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-52246-9_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52245-2
Online ISBN: 978-3-030-52246-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)