Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improvement of Automatic Extraction of Inventive Information with Patent Claims Structure Recognition

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1229))

Included in the following conference series:

  • 866 Accesses

Abstract

Our recent research finding produces methods for automatic extraction of inventive information out of patents thanks to the use NLP; notably the automatic text processing. However, these methods have drawbacks due to a high amount of noise (duplicates, errors) in the output result that prevent the further use of TRIZ methodology. In the mean-time, we observed that patent claims are the most important source for inventive information. These text paragraphs have nevertheless a dual nature (combining legal and technical vocabulary) and this nature engender part of the observed noise. We postulate that taking into consideration claims hierarchical structure and its structural information can reduce the time for extraction and refine the final output quality, which is the principal aim of the paper. In this paper, we report on the methodology we have employed based on the patent claim structure recognition as a way to address our objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parker, J.P., Begnaud, L.G.: Developing Creative Leadership. Libraries Unlimited, Westport (2004)

    Google Scholar 

  2. Dalkey, N.C., Helmer-Hirschberg, O.: An Experimental Application of the Delphi Method to the Use of Experts (1962). https://www.rand.org/pubs/research_memoranda/RM727z1.html. Accessed 09 Apr 2019

  3. Prince, G.M.: The Practice of Creativity: A Manual for Dynamic Group Problem Solving. Collier Books, New York (1972)

    Google Scholar 

  4. Aльтшyллep, Г.: Haйти идeю: Bвeдeниe в TPИЗ—тeopию peшeния изoбpeтaтeльcкиx зaдaч. Aльпинa Пaблишep (2008)

    Google Scholar 

  5. European Patent Office: Guidelines for Examination in the European Patent Office (2018)

    Google Scholar 

  6. Tanaka, M., Saito, H.: Transport hose with leak detecting structure, US 4259553A, 31 March 1981

    Google Scholar 

  7. Cavallucci, D. (ed.): TRIZ — The Theory of Inventive Problem Solving: Current Research and Trends in French Academic Institutions. Springer, Cham (2017)

    Google Scholar 

  8. Cavallucci, D.: From TRIZ to Inventive Design Method (IDM): towards a formalization of Inventive Practices in R&D Departments (2012)

    Google Scholar 

  9. Rousselot, F., Zanni-Merk, C., Cavallucci, D.: Towards a formal definition of contradiction in inventive design. Comput. Ind. 63(3), 231–242 (2012)

    Article  Google Scholar 

  10. Cavallucci, D., Rousselot, F., Zanni, C.: Initial situation analysis through problem graph. CIRP J. Manuf. Sci. Technol. 2(4), 310–317 (2010)

    Article  Google Scholar 

  11. Guyot, B., Normand, S.: Le document brevet, un passage entre plusieurs mondes. Document et organisation, Paris (2004)

    Google Scholar 

  12. Bonino D., Ciaramella A., Corno, F.: Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0172219009000465. Accessed 10 Apr 2019

  13. Souili, A.W.M.: Contribution à la Méthode de conception inventive par l’extraction automatique de connaissances des textes de brevets d’invention’, Université de Strasbourg, École Doctorale Mathématiques, Sciences de l’Information et de l’Ingénieur Laboratoire de Génie de la Conception (LGéCo) – INSA de Strasbourg (2015)

    Google Scholar 

  14. Espacenet Patent search: worldwide.espacenet. https://worldwide.espacenet.com/. Accessed 10 Apr 2019

  15. Questel: Orbit Intellixir, Questel, 2019. https://www.questel.com/software/orbit-intellixir/. Accessed 11 Apr 2019

  16. Patent Research & Analysis Software| LexisNexis TotalPatent OneTM, LexisNexis® IP

    Google Scholar 

  17. Information Retrieval Facility. http://www.ir-facility.org/. Accessed 22 Mar 2019

  18. Advanced patent document processing techniques| Projects| FP6| CORDIS| European Commission. https://cordis.europa.eu/project/rcn/79394/factsheet/en. Accessed 11 Apr 2019

  19. BRUGMANN SOFTWARE GMBH, iPatDoc (2013)

    Google Scholar 

  20. Sheremetyeva, S.: Natural language analysis of patent claims. In: Proceedings of the ACL-2003 workshop on Patent corpus processing—Not Known, vol. 20, pp. 66–73 (2003)

    Google Scholar 

  21. Shinmori, A., Okumura, M.: Aligning patent claims with detailed descriptions for readability. In: Proceedings Fourth NTCIR Workshop, vol. 12, no. 3, pp. 111–128, July 2005

    Google Scholar 

  22. Parapatics, P., Dittenbach, M.: Patent Claim Decomposition for Improved Information Extraction, ResearchGate (2011). https://www.researchgate.net/publication/226411853_Patent_Claim_Decomposition_for_Improved_Information_Extraction. Accessed 11 Apr 2019

  23. Verberne, S., D’hondt, E., Oostdijk, N.: Quantifying the challenges in parsing patent claims, ResearchGate (2010). https://www.researchgate.net/publication/228739952_Quantifying_the_challenges_in_parsing_patent_claims. Accessed 11 Apr 2019

  24. D’hondt, E., Verberne, S., Alink, W., Cornacchia, R.: Combining document representations for prior-art retrieval, p. 9 (2011)

    Google Scholar 

  25. Yang, S.-Y., Soo, V.-W.: Extract conceptual graphs from plain texts in patent claims. Eng. Appl. Artif. Intell. 25(4), 874–887 (2012)

    Article  Google Scholar 

  26. Hackl-Sommer, R., Schwantner, M.: Patent claim structure recognition, Arch. Data Sci. Ser. A (Online First) (2017). https://publikationen.bibliothek.kit.edu/1000069936. Accessed 11 Apr 2019

  27. Souili, A., Cavallucci, D.: Automated extraction of knowledge useful to populate inventive design ontology from patents. In: Cavallucci, D. (ed.) TRIZ—The Theory of Inventive Problem Solving, pp. 43–62. Springer, Cham (2017)

    Chapter  Google Scholar 

  28. Souili, A., Cavallucci, D., Rousselot, F.: A lexico-syntactic pattern matching method to extract Idm—Triz knowledge from on-line patent databases. Proc. Eng. 131, 418–425 (2015)

    Article  Google Scholar 

  29. Salton, G., Yang, C.S.: On the Specification of Term Values in Automatic Indexing, June 1973

    Google Scholar 

  30. Anthony, L.: AntConc. Tokyo, Japan: Waseda University (2019)

    Google Scholar 

  31. Bennett, B.E.: Seals with integrated leak progression detection capability, US 7316154B1, 08 January 2008

    Google Scholar 

  32. Zhou, M., Huang, J.-X., Huang, C.N.T., Wang, W.: Example based machine translation system, US 7353165B2, 01 April 2008

    Google Scholar 

  33. Sunkara, M.K.: Sealing ring with electrochemical sensing electrode, US5865971A, 02 February 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Berduygina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berduygina, D., Cavallucci, D. (2020). Improvement of Automatic Extraction of Inventive Information with Patent Claims Structure Recognition. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1229. Springer, Cham. https://doi.org/10.1007/978-3-030-52246-9_46

Download citation

Publish with us

Policies and ethics