Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving News Personalization Through Search Logs

  • Conference paper
  • First Online:
Bias and Social Aspects in Search and Recommendation (BIAS 2020)

Abstract

Content personalization is a long-standing problem for online news services. In most personalization approaches users are represented by topical interest profiles that are matched with news articles in order to properly decide which articles are to be recommended. When constructing user profiles, existing personalization methods exploit the user activity observed within the news service itself without incorporating information from other sources.

In this paper we study the problem of news personalization by leveraging usage information that is external to the news service. We propose a novel approach that relies on the concept of “search profiles”, which are user profiles that are built based on the past interactions of the user with a web search engine. We extensively test our proposal on real-world datasets obtained from Yahoo. We explore various dimensions and granularities at which search profiles can be built. Experimental results show that, compared to a basic strategy that does not exploit the search activity of users, our approach is able to boost the clicks on news articles shown at the top positions of a ranked result list.

An extended version of this paper appeared in [3]. Most of the work was done while all the authors were affiliated with Yahoo Labs, Barcelona, Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Publicly available at https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75.

References

  1. Ahn, J.w., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive news systems: help or harm? In: Proceedings of International Conference on World Wide Web (WWW), pp. 11–20 (2007)

    Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York (1999)

    Google Scholar 

  3. Bai, X., Cambazoglu, B.B., Gullo, F., Mantrach, A., Silvestri, F.: Exploiting search history of users for news personalization. Inf. Sci. 385–386, 125–137 (2017)

    Article  Google Scholar 

  4. Bansal, T., Das, M., Bhattacharyya, C.: Content driven user profiling for comment-worthy recommendations of news and blog articles. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 195–202 (2015)

    Google Scholar 

  5. Billsus, D., Pazzani, M.J.: A hybrid user model for news story classification. In: Kay, J. (ed.) UM99 User Modeling. CICMS, vol. 407, pp. 99–108. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-2490-1_10

    Chapter  Google Scholar 

  6. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002). https://doi.org/10.1023/A:1021240730564

    Article  MATH  Google Scholar 

  7. Chirita, P.A., Firan, C.S., Nejdl, W.: Personalized query expansion for the web. In: Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 7–14 (2007)

    Google Scholar 

  8. Chu, W., Park, S.T.: Personalized recommendation on dynamic content using predictive bilinear models. In: Proceedings of International Conference on World Wide Web (WWW), pp. 691–700 (2009)

    Google Scholar 

  9. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proceedings of International Conference on World Wide Web (WWW), pp. 271–280 (2007)

    Google Scholar 

  10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. (JMLR) 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Dou, Z., Song, R., Wen, J.R.: A large-scale evaluation and analysis of personalized search strategies. In: Proceedings of International Conference on World Wide Web (WWW), pp. 581–590 (2007)

    Google Scholar 

  12. Fetahu, B., Markert, K., Anand, A.: Automated news suggestions for populating wikipedia entity pages. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM), pp. 323–332 (2015)

    Google Scholar 

  13. Gabrilovich, E., Dumais, S., Horvitz, E.: Newsjunkie: providing personalized newsfeeds via analysis of information novelty. In: Proceedings of International Conference on World Wide Web (WWW), pp. 482–490 (2004)

    Google Scholar 

  14. Garcin, F., Dimitrakakis, C., Faltings, B.: Personalized news recommendation with context trees. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 105–112 (2013)

    Google Scholar 

  15. Harvey, M., Crestani, F., Carman, M.J.: Building user profiles from topic models for personalised search. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM), pp. 2309–2314 (2013)

    Google Scholar 

  16. Hsieh, C.K., Yang, L., Wei, H., Naaman, M., Estrin, D.: Immersive recommendation: news and event recommendations using personal digital traces. In: Proceedings of International Conference on World Wide Web (WWW), pp. 51–62 (2016)

    Google Scholar 

  17. Husin, H., Thom, J., Zhang, X.: News recommendation based on web usage and web content mining. In: ICDE Workshops, pp. 326–329 (2013)

    Google Scholar 

  18. Lagun, D., Lalmas, M.: Understanding user attention and engagement in online news reading. In: Proceedings of International Conference on Web Search and Data Mining (WSDM), pp. 113–122 (2016)

    Google Scholar 

  19. Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of International Conference on Machine Learning (ICML), pp. 331–339 (1995)

    Google Scholar 

  20. Li, L., Wang, D.D., Zhu, S.Z., Li, T.: Personalized news recommendation: a review and an experimental investigation. J. Comput. Sci. Technol. 26(5), 754–766 (2011). https://doi.org/10.1007/s11390-011-0175-2

    Article  Google Scholar 

  21. Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: a scalable two-stage personalized news recommendation system. In: Proceedings of International Conference on Research and Development in Information Retrieval (SIGIR), pp. 125–134 (2011)

    Google Scholar 

  22. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of International Conference on World Wide Web (WWW), pp. 661–670 (2010)

    Google Scholar 

  23. Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: Proceedings of International Conference on Intelligent User Interfaces (IUI), pp. 31–40 (2010)

    Google Scholar 

  24. Lommatzsch, A.: Real-time news recommendation using context-aware ensembles. In: de Rijke, M., et al. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 51–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6_5

    Chapter  Google Scholar 

  25. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3

    Chapter  Google Scholar 

  26. Ma, H., Liu, X., Shen, Z.: User fatigue in online news recommendation. In: Proceedings of International Conference on World Wide Web (WWW), pp. 1363–1372 (2016)

    Google Scholar 

  27. Maksai, A., Garcin, F., Faltings, B.: Predicting online performance of news recommender systems through richer evaluation metrics. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 179–186 (2015)

    Google Scholar 

  28. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  29. Pantel, P., Lin, T., Gamon, M.: Mining entity types from query logs via user intent modeling. In: Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL), pp. 563–571 (2012)

    Google Scholar 

  30. Park, S.T., Pennock, D., Madani, O., Good, N., DeCoste, D.: Naïve filterbots for robust cold-start recommendations. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 699–705 (2006)

    Google Scholar 

  31. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW), pp. 175–186 (1994)

    Google Scholar 

  32. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in Artificial Intelligence 2009, p. 4:2 (2009)

    Google Scholar 

  33. Tan, A.H., Teo, C.: Learning user profiles for personalized information dissemination. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN), vol. 1, pp. 183–188 (1998)

    Google Scholar 

  34. Trevisiol, M., Aiello, L.M., Schifanella, R., Jaimes, A.: Cold-start news recommendation with domain-dependent browse graph. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 81–88 (2014)

    Google Scholar 

  35. Wen, H., Fang, L., Guan, L.: A hybrid approach for personalized recommendation of news on the web. Expert Syst. Appl. 39(5), 5806–5814 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, X., Cambazoglu, B.B., Gullo, F., Mantrach, A., Silvestri, F. (2020). Improving News Personalization Through Search Logs. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Bias and Social Aspects in Search and Recommendation. BIAS 2020. Communications in Computer and Information Science, vol 1245. Springer, Cham. https://doi.org/10.1007/978-3-030-52485-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52485-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52484-5

  • Online ISBN: 978-3-030-52485-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics