Abstract
Content personalization is a long-standing problem for online news services. In most personalization approaches users are represented by topical interest profiles that are matched with news articles in order to properly decide which articles are to be recommended. When constructing user profiles, existing personalization methods exploit the user activity observed within the news service itself without incorporating information from other sources.
In this paper we study the problem of news personalization by leveraging usage information that is external to the news service. We propose a novel approach that relies on the concept of “search profiles”, which are user profiles that are built based on the past interactions of the user with a web search engine. We extensively test our proposal on real-world datasets obtained from Yahoo. We explore various dimensions and granularities at which search profiles can be built. Experimental results show that, compared to a basic strategy that does not exploit the search activity of users, our approach is able to boost the clicks on news articles shown at the top positions of a ranked result list.
An extended version of this paper appeared in [3]. Most of the work was done while all the authors were affiliated with Yahoo Labs, Barcelona, Spain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Publicly available at https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75.
References
Ahn, J.w., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive news systems: help or harm? In: Proceedings of International Conference on World Wide Web (WWW), pp. 11–20 (2007)
Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York (1999)
Bai, X., Cambazoglu, B.B., Gullo, F., Mantrach, A., Silvestri, F.: Exploiting search history of users for news personalization. Inf. Sci. 385–386, 125–137 (2017)
Bansal, T., Das, M., Bhattacharyya, C.: Content driven user profiling for comment-worthy recommendations of news and blog articles. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 195–202 (2015)
Billsus, D., Pazzani, M.J.: A hybrid user model for news story classification. In: Kay, J. (ed.) UM99 User Modeling. CICMS, vol. 407, pp. 99–108. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-2490-1_10
Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002). https://doi.org/10.1023/A:1021240730564
Chirita, P.A., Firan, C.S., Nejdl, W.: Personalized query expansion for the web. In: Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 7–14 (2007)
Chu, W., Park, S.T.: Personalized recommendation on dynamic content using predictive bilinear models. In: Proceedings of International Conference on World Wide Web (WWW), pp. 691–700 (2009)
Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proceedings of International Conference on World Wide Web (WWW), pp. 271–280 (2007)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. (JMLR) 7, 1–30 (2006)
Dou, Z., Song, R., Wen, J.R.: A large-scale evaluation and analysis of personalized search strategies. In: Proceedings of International Conference on World Wide Web (WWW), pp. 581–590 (2007)
Fetahu, B., Markert, K., Anand, A.: Automated news suggestions for populating wikipedia entity pages. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM), pp. 323–332 (2015)
Gabrilovich, E., Dumais, S., Horvitz, E.: Newsjunkie: providing personalized newsfeeds via analysis of information novelty. In: Proceedings of International Conference on World Wide Web (WWW), pp. 482–490 (2004)
Garcin, F., Dimitrakakis, C., Faltings, B.: Personalized news recommendation with context trees. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 105–112 (2013)
Harvey, M., Crestani, F., Carman, M.J.: Building user profiles from topic models for personalised search. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM), pp. 2309–2314 (2013)
Hsieh, C.K., Yang, L., Wei, H., Naaman, M., Estrin, D.: Immersive recommendation: news and event recommendations using personal digital traces. In: Proceedings of International Conference on World Wide Web (WWW), pp. 51–62 (2016)
Husin, H., Thom, J., Zhang, X.: News recommendation based on web usage and web content mining. In: ICDE Workshops, pp. 326–329 (2013)
Lagun, D., Lalmas, M.: Understanding user attention and engagement in online news reading. In: Proceedings of International Conference on Web Search and Data Mining (WSDM), pp. 113–122 (2016)
Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of International Conference on Machine Learning (ICML), pp. 331–339 (1995)
Li, L., Wang, D.D., Zhu, S.Z., Li, T.: Personalized news recommendation: a review and an experimental investigation. J. Comput. Sci. Technol. 26(5), 754–766 (2011). https://doi.org/10.1007/s11390-011-0175-2
Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: a scalable two-stage personalized news recommendation system. In: Proceedings of International Conference on Research and Development in Information Retrieval (SIGIR), pp. 125–134 (2011)
Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of International Conference on World Wide Web (WWW), pp. 661–670 (2010)
Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: Proceedings of International Conference on Intelligent User Interfaces (IUI), pp. 31–40 (2010)
Lommatzsch, A.: Real-time news recommendation using context-aware ensembles. In: de Rijke, M., et al. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 51–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6_5
Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3
Ma, H., Liu, X., Shen, Z.: User fatigue in online news recommendation. In: Proceedings of International Conference on World Wide Web (WWW), pp. 1363–1372 (2016)
Maksai, A., Garcin, F., Faltings, B.: Predicting online performance of news recommender systems through richer evaluation metrics. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 179–186 (2015)
Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)
Pantel, P., Lin, T., Gamon, M.: Mining entity types from query logs via user intent modeling. In: Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL), pp. 563–571 (2012)
Park, S.T., Pennock, D., Madani, O., Good, N., DeCoste, D.: Naïve filterbots for robust cold-start recommendations. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 699–705 (2006)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW), pp. 175–186 (1994)
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in Artificial Intelligence 2009, p. 4:2 (2009)
Tan, A.H., Teo, C.: Learning user profiles for personalized information dissemination. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN), vol. 1, pp. 183–188 (1998)
Trevisiol, M., Aiello, L.M., Schifanella, R., Jaimes, A.: Cold-start news recommendation with domain-dependent browse graph. In: Proceedings of International ACM Conference on Recommender Systems (RecSys), pp. 81–88 (2014)
Wen, H., Fang, L., Guan, L.: A hybrid approach for personalized recommendation of news on the web. Expert Syst. Appl. 39(5), 5806–5814 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bai, X., Cambazoglu, B.B., Gullo, F., Mantrach, A., Silvestri, F. (2020). Improving News Personalization Through Search Logs. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Bias and Social Aspects in Search and Recommendation. BIAS 2020. Communications in Computer and Information Science, vol 1245. Springer, Cham. https://doi.org/10.1007/978-3-030-52485-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-52485-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52484-5
Online ISBN: 978-3-030-52485-2
eBook Packages: Computer ScienceComputer Science (R0)