Abstract
We present a deep learning semantic segmentation algorithm for processing images acquired by a novel ophthalmic device, the NIDEK GS-1. The proposed model can sophisticate the current reference exam, called gonioscopy, for evaluating the risk of developing glaucoma, a severe eye pathology with a considerable worldwide impact in terms of costs and negative effects on affected people’s quality of life, and for inferring its categorization. The target eye region of gonioscopy is the interface between the iris and the cornea, and the anatomical structures that are located there. Our approach exploits a dense U-net architecture and is the first automatic system segmenting irido-corneal interface images from the novel device. Results show promising performance, providing about 88% of mean pixel-wise classification accuracy in a 5-fold cross-validation experiment on a very limited size dataset of annotated images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abràmoff, M.D., et al.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Opthalmol. Vis. Sci. 57(13), 5200 (2016). https://doi.org/10.1167/iovs.16-19964
Alward, W.: Color Atlas of Gonioscopy. American Academy of Ophthalmology, San Francisco (2008)
Ben-Cohen, A., et al.: Retinal layers segmentation using fully convolutional network in OCT images (2017)
Chandra, A., Gupta, A., Gupta, V., Sihota, R., Azad, R., Chandra, P.: Comparative evaluation of RetCam vs. gonioscopy images in congenital glaucoma. Indian J. Ophthalmol. 62(2), 163 (2014). https://doi.org/10.4103/0301-4738.116487
Cheng, J., et al.: Closed angle glaucoma detection in RetCam images. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, August 2010. https://doi.org/10.1109/iembs.2010.5627290
Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM International Conference on Multimedia, MM 2019. ACM, New York (2019). https://doi.org/10.1145/3343031.3350535
Fang, L., Cunefare, D., Wang, C., Guymer, R.H., Li, S., Farsiu, S.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5), 2732 (2017). https://doi.org/10.1364/boe.8.002732
Fauw, J.D., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018). https://doi.org/10.1038/s41591-018-0107-6
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: The IEEE International Conference on Computer Vision (ICCV), December 2015
Heckbert, P.: Graphics Gems IV. AP Professional, Boston (1994)
Hertzog, L.H., Albrecht, K.G., LaBree, L., Lee, P.P.: Glaucoma care and conformance with preferred practice patterns. Ophthalmology 103(7), 1009–1013 (1996). https://doi.org/10.1016/s0161-6420(96)30573-3
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017). https://doi.org/10.1109/cvpr.2017.243
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 448–456 (2015). JMLR.org
Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017
Li, Z., He, Y., Keel, S., Meng, W., Chang, R.T., He, M.: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8), 1199–1206 (2018). https://doi.org/10.1016/j.ophtha.2018.01.023
Liu, X., et al.: Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning. IEEE Access 7, 3046–3061 (2019). https://doi.org/10.1109/access.2018.2889321
Orlando, J.I., et al.: U2-Net: a Bayesian u-net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, April 2019. https://doi.org/10.1109/isbi.2019.8759581
Pead, E., et al.: Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv. Ophthalmol. 64(4), 498–511 (2019). https://doi.org/10.1016/j.survophthal.2019.02.003
Pekala, M., Joshi, N., Liu, T.A., Bressler, N., DeBuc, D.C., Burlina, P.: Deep learning based retinal OCT segmentation. Comput. Biol. Med. 114, 103445 (2019). https://doi.org/10.1016/j.compbiomed.2019.103445
Raghavendra, U., Fujita, H., Bhandary, S.V., Gudigar, A., Tan, J.H., Acharya, U.R.: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 441, 41–49 (2018). https://doi.org/10.1016/j.ins.2018.01.051
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 ( 2017). https://doi.org/10.1364/BOE.8.003627. http://www.osapublishing.org/boe/abstract.cfm?URI=boe-8-8-3627
Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., Cheng, C.Y.: Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology 121(11), 2081–2090 (2014). https://doi.org/10.1016/j.ophtha.2014.05.013
Trucco, E., et al.: Validating retinal fundus image analysis algorithms: issues and a proposal. Invest. Opthalmol. Vis. Sci. 54(5), 3546 (2013). https://doi.org/10.1167/iovs.12-10347
Acknowledgement
We thank the CVIP/VAMPIRE research team of the University of Dundee, Dundee (UK) and the VAMPIRE research team of the University of Edinburgh, Edinburgh (UK) for useful discussions and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
This work is fully funded by a Ph.D. studentship from NIDEK Technologies Srl.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Peroni, A. et al. (2020). A Deep Learning Approach for Semantic Segmentation of Gonioscopic Images to Support Glaucoma Categorization. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-52791-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52790-7
Online ISBN: 978-3-030-52791-4
eBook Packages: Computer ScienceComputer Science (R0)