Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum IPMs for Linear Optimization

  • Living reference work entry
  • First Online:
Encyclopedia of Optimization

Introduction

Building efficient quantum computing algorithms is an active, emerging area of research. The Deutsch-Jozsa algorithm [8] was the first instance of a quantum algorithm outperforming the best classical algorithm. After this algorithm, many quantum algorithms are proposed with speed-up compared to algorithms on conventional computers to solve challenging mathematical problems, such as integer factorization [20] and unstructured search [10]. Due to various applications of mathematical optimization and the computational challenges on classical computers, several quantum computing optimization algorithms were developed such as the quantum approximation optimization algorithm (QAOA) for quadratic unconstrained binary optimization (QUBO) [9] and quantum interior point methods (QIPMs) for linear optimization problems (LOPs) [17].

QIPMs are analogous to classical interior point methods(IPMs) that use quantum linear system algorithms (QLSAs) to solve the Newton system at each...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ambainis A (2012) Variable time amplitude amplification and quantum algorithms for linear algebra problems. In: STACS’12 (29th Symposium on Theoretical Aspects of Computer Science). LIPIcs, vol 14, pp 636–647

    Google Scholar 

  2. van Apeldoorn J, Cornelissen A, Gilyén A, Nannicini G (2022) Quantum tomography using state-preparation unitaries. arXiv preprint arXiv:220708800

    Google Scholar 

  3. Augustino B, Nannicini G, Terlaky T, Zuluaga LF (2021) Quantum interior point methods for semidefinite optimization. arXiv preprint arXiv:211206025. (To appear in Quantum.)

    Google Scholar 

  4. Augustino B, Terlaky T, Mohammadisiahroudi M, Zuluaga LF (2021) An inexact-feasible quantum interior point method for second-order cone optimization. Tech Report

    Google Scholar 

  5. Casares P, Martin-Delgado M (2020) A quantum interior-point predictor–corrector algorithm for linear programming. J Phys A: Math Theor 53(44):445305. https://doi.org/10.1088/1751-8121/abb439

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakraborty S, Gilyén A, Jeffery S (2018) The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. arXiv preprint arXiv:180401973

    Google Scholar 

  7. Childs AM, Kothari R, Somma RD (2017) Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J Comput 46(6):1920–1950

    Article  MathSciNet  MATH  Google Scholar 

  8. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A Math Phys Sci 400(1818):97–117

    MathSciNet  MATH  Google Scholar 

  9. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint https://arxiv.org/abs/1411.4028

  10. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Association for Computing Machinery, pp 212–219. https://doi.org/10.1145/237814.237866

    MATH  Google Scholar 

  11. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15). https://doi.org/10.1103/PhysRevLett.103.150502

  12. Kerenidis I, Prakash A (2020) A quantum interior point method for LPs and SDPs. ACM Trans Quantum Comput 1(1):1–32. https://doi.org/10.1145/3406306

    Article  MathSciNet  Google Scholar 

  13. Kojima M, Megiddo N, Mizuno S (1993) A primal—dual infeasible-interior-point algorithm for linear programming. Math Program 61(1):263–280. https://doi.org/10.1007/BF01582151

    Article  MathSciNet  MATH  Google Scholar 

  14. Low GH, Chuang IL (2019) Hamiltonian simulation by qubitization. Quantum 3:163

    Article  Google Scholar 

  15. Mohammadisiahroudi M, Fakhimi R, Terlaky T (2022) Efficient use of quantum linear system algorithms in interior point methods for linear optimization. arXiv preprint arXiv:220501220

    Google Scholar 

  16. Mohammadisiahroudi M, Augustino B, Fakhimi R, Nannicini G, Terlaky T (2023) Accurately solving linear systems with quantum oracles. Tech Report

    Google Scholar 

  17. Mohammdisiahroudi M, Fakhimi R, Wu Z, Terlaky T (2023) An inexact feasible interior point method for linear optimization with high adaptability to quantum computers. arXiv preprint arXiv:2307.14445

    Google Scholar 

  18. Monteiro RD, O’Neal JW (2003) Convergence analysis of a long-step primal-dual infeasible interior-point LP algorithm based on iterative linear solvers. Georgia Institute of Technology

    Google Scholar 

  19. Roos C, Terlaky T, Vial JP (2005) Interior Point Methods for Linear Optimization. Springer Science & Business Media. https://doi.org/10.1007/b100325

    MATH  Google Scholar 

  20. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, pp 124–134. https://doi.org/10.1109/SFCS.1994.365700

  21. Vazquez AC, Hiptmair R, Woerner S (2022) Enhancing the quantum linear systems algorithm using richardson extrapolation. ACM Trans Quantum Comput 3(1):1–37

    Article  MathSciNet  Google Scholar 

  22. Wossnig L, Zhao Z, Prakash A (2018) Quantum linear system algorithm for dense matrices. Phys Rev Lett 120(5):050502

    Article  MathSciNet  Google Scholar 

  23. Wright SJ (1997) Primal-Dual Interior-Point Methods. SIAM. https://doi.org/10.1137/1.9781611971453

    Book  MATH  Google Scholar 

  24. Wu Z, Mohammdisiahroudi M, Augustino B, Yang X, Terlaky T (2023) An inexact feasible quantum interior point method for linearly constrained quadratic optimization. Entropy 25(2):330. https://doi.org/10.3390/e25020330

    Article  MathSciNet  Google Scholar 

  25. Zhou G, Toh KC (2004) Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming. Math Program 99(2):261–282. https://doi.org/10.1007/s10107-003-0431-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Defense Advanced Research Projects Agency as part of the project W911NF2010022: The Quantum Computing Revolution and Optimization: Challenges and Opportunities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadhossein Mohammadisiahroudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohammadisiahroudi, M., Terlaky, T. (2023). Quantum IPMs for Linear Optimization. In: Pardalos, P.M., Prokopyev, O.A. (eds) Encyclopedia of Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-54621-2_851-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54621-2_851-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54621-2

  • Online ISBN: 978-3-030-54621-2

  • eBook Packages: Living Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics