Abstract
Falsification has garnered much interest recently as a way to validate complex CPS designs with respect to a specification expressed via temporal logics. Using their quantitative semantics, the falsification problem can be formulated as a robustness minimization problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A clock valuation, denoted by the letter \(\textit{\textbf{x}}\) in bold, is a vector of clock values, while \(x_i\) denotes the \(i^{th}\) clock of the automaton, as in Fig. 1.
- 2.
Using more general predicates, such as linear predicates, leads to a more complicated problem of defining the transformation from the unit box, which we plan to consider in future work. This is indeed related to the problem of uniform sampling within a convex polytope.
- 3.
The exploitation-driven and exploration-driven characterization refers only to the behaviors of the solvers seen on a global level, since the above-mentioned metaheuristics contain both exploitation-driven and exploration-driven aspects.
- 4.
The seed here refers to the index for a sequence of random numbers in MATLAB.
- 5.
References
Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and coverage-based falsification for embedded control systems. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_24
Luersen, M.A., Le Richec, R.: Globalized Nelder-mead method for engineering optimization. Comput. Struct. 82(23), 2251–2260 (2004)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Annapureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: TACAS, pp. 254–257 (2011)
Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Comput. 241, 142–176 (2015)
Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for timed automata with application to language inclusion measurement. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_13
Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 54–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_4
Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Integrating simulink models into the model checker cosmos. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 363–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_19
Benoît Barbot. WordGen (2019). https://git.lacl.fr/barbot/wordgen
Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D., Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, San Francisco, CA, USA, pp. 11–18. Morgan Kaufmann Publishers Inc. (2002)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
Brigati, S., Francesconi, F., Malcovati, P., Tonietto, D., Baschirotto, A., Maloberti, F.: Modeling sigma-delta modulator non-idealities in simulink. In: ISCAS 1999. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, May 1999, vol. 2, pp. 384–387 (1999)
Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model checking of mixed-analog circuits. Formal Method Syst. Des. 36(2), 97–113 (2010)
Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_3
Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid systems. Formal Method Syst. Des. 34(2), 183–213 (2009)
Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsification of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_35
Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: CAV, pp. 167–170 (2010)
Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17
Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9
Dreo, J., Siarry, P., Petrowski, A., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30966-7
Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10
Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems. In: WAFR (2004)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197_12
Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal temporal logic. In: HSCC, pp. 57–66. ACM (2019)
Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Springer, New York (2009)
Gabbay, D.M., Thagard, P., Woods, J., Butterfield, J., Earman, J.: Philosophy of Physics: Handbook of the Philosophy of Science. Elsevier Science, Amsterdam (2006)
Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4
Heinrich, S.: Some open problems concerning the star-discrepancy. J. Complex. 19(3), 416–419 (2003). Oberwolfach Special Issue
Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for automotive systems. In: 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015, Seattle, WA, USA, 13 April 2015, pp. 25–30 (2014)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2(4), 255–299 (1990)
Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_11
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Proceedings of CAV 2011 (2011)
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FORMATS/FTRTFT, pp. 152–166 (2004)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivanciec, F., Gupta, A., Pappas, G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: HSCC 2010 - Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 211–220 (2010)
Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)
Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the falsification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_1
Sim, G., Ahn, S., Park, I., Youn, J., Yoo, S., Min, k.: Automatic longitudinal regenerative control of EVS based on a driver characteristics-oriented deceleration model. World Electr. Veh. J. 10, 58 (2019)
Skruch, P.: A coverage metric to evaluate tests for continuous-time dynamic systems. Central Eur. J. Eng. 1(2), 174–180 (2011)
Stein, W.A., et al.: Sage Mathematics Software (Version 6.9). The Sage Development Team (2015). http://www.sagemath.org
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Barbot, B., Basset, N., Dang, T., Donzé, A., Kapinski, J., Yamaguchi, T. (2020). Falsification of Cyber-Physical Systems with Constrained Signal Spaces. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-55754-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55753-9
Online ISBN: 978-3-030-55754-6
eBook Packages: Computer ScienceComputer Science (R0)