Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Acoustic Resonances in a Confined Set of Disks

  • Conference paper
  • First Online:
Traffic and Granular Flow 2019

Abstract

We study in this work a system with a binary mixture of disks (both species only differ in their mass) enclosed in a rectangular region. The disks are arranged, at high particle density, in a hexagonal lattice. Specifically, we are interested in the conditions for mechanical signal transmission. Two different potentials are considered. Our results are obtained by means of soft disks computer simulations. We analytically determine the eigenfrequencies spectra of the system from the corresponding Hessian matrix. Alternatively, the eigenfrequencies can also be obtained from the time evolution of molecular dynamics simulations. Previous works have shown that mechanical signal transmission in granular matter can be used to develop acoustic switches. Our results reveal that the working range of the acoustic switch changes dramatically for different interaction models. In particular, strong anisotropies in signal transmission may appear for certain interparticle forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Alagoz, B. Baykant Alagoz, Sonic crystal acoustic switch device. J. Acoust. Soc. Am. 133, EL485–EL490 (2013)

    Google Scholar 

  2. J. Bardeen, W.H. Brattain, Phys. Rev. 74, 230 (1948)

    Article  ADS  Google Scholar 

  3. N. Boechler, G. Theocharis, C. Daraio, Nat. Mater. 10, 665 (2011)

    Article  ADS  Google Scholar 

  4. N. Boechler, G. Theocharis, P.G. Kevrekidis, C. Daraio, J. Appl. Phys. 109, 074,906 (2011)

    Google Scholar 

  5. S.A. Cummer, Science 343, 495 (2014)

    Article  ADS  Google Scholar 

  6. T. Devaux, A. Cebrecos, O. Richoux, V. Pagneux, V. Tournat, Acoustic radiation pressure for nonreciprocal transmission and switch effects. Nature Commun. 10, 3292 (2019)

    Article  ADS  Google Scholar 

  7. G. Gantzounis, M. Serra-Garcia, K. Homma, J.M. Mendoza, C. Daraio, Granular metamaterials for vibration mitigation. J. Appl. Phys. 114, 093,514 (2013)

    Google Scholar 

  8. F. Li, P. Anzel, J. Yang, P.G. Kevrekidis, C. Daraio, Granular acoustic switches and logic elements. Comput. Sci. Eng. 5, 5311 (2014)

    Google Scholar 

  9. A. Lobkovsky, F. Vega Reyes, J. Urbach, Eur. Phys. J. Spec. Top. 179, 113–122 (2009)

    Google Scholar 

  10. Y.J. Lu, Y. Ge, S.Q. Yuan, H.X. Sun, X.J. Liu, Acoustic logic gates by a curved waveguide with ultrathin metasurfaces. J. Phys. D Appl. Phys. 53, 015,301 (2020)

    Google Scholar 

  11. M.A. López-Castaño, J.F. González-Saavedra, A. Rodríguez-Rivas, F. Vega Reyes, Statistical properties of a granular gas fluidized by turbulent air wakes (2019). E-print arXiv:1911.01384

  12. I. Mahboob, E. Flurin, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Nat. Commun. 2, 198 (2011)

    Article  ADS  Google Scholar 

  13. P. Melby, F. Vega Reyes, A. Prevost, R. Robertson, P. Kumar, D.A. Egolf, J.S. Urbach, The dynamics of thin vibrated granular layers. J. Phys. Condens. Matter 17, S2689–S2704 (2005)

    Google Scholar 

  14. J.A. Olafsen, J.S. Urbach, Clustering, order and collapse in a driven granular monolayer. Phys. Rev. Lett 81, 4369–4372 (1998)

    Article  ADS  Google Scholar 

  15. A. Prevost, P. Melby, D. Egolf, J.S. Urbach, Phys. Rev. E 17, 050,301(R) (2005)

    Google Scholar 

  16. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, UK, 2004)

    Book  Google Scholar 

  17. A. Tanguy, J.P. Wittmer, F. Leonforte, J.L. Barrat, Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations. Phys. Rev. B 66, 174,205 (2002)

    Google Scholar 

  18. F. Vega Reyes, J.S. Urbach, Clustering, order and collapse in a driven granular monolayer. Phys. Rev. E 78, 051,301 (2008)

    Google Scholar 

  19. Q. Wu, C. Cui, T. Bertrand, M.D. Shattuck, C.S. O’Hern, Active acoustic switches using two-dimensional granular crystals. Phys. Rev. E 99, 062,901 (2019)

    Google Scholar 

  20. L. Zigoneanu, B.I. Popa, S.A. Cummer, Nat. Mater. 13, 352 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. González-Saavedra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Saavedra, J.F., Rodríguez-Rivas, Á., López-Castaño, M.A., Vega Reyes, F. (2020). Acoustic Resonances in a Confined Set of Disks. In: Zuriguel, I., Garcimartin, A., Cruz, R. (eds) Traffic and Granular Flow 2019. Springer Proceedings in Physics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-030-55973-1_43

Download citation

Publish with us

Policies and ethics