Abstract
This paper develops the theory of probabilistic-valued measures and integrals as a suitable aggregation tool for dealing with certain types of imprecise information. The motivation comes from Moore’s interval mathematics, where the use of intervals in data processing is due to measurement inaccuracy errors. In case of rounding, the intervals can be considered in distribution function form linked to random variables uniformly distributed over the relevant intervals. We demonstrate how the convolution of distribution functions is taken into account, and integration with respect to probabilistic-valued measures is converted into convolving certain distribution functions. We also improve some existing features of the integral and investigate its convergence properties.
This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0337 and also cofinanced by bilateral call Slovak-Poland grant scheme No. SK-PL-18-0032 with the Polish National Agency for Academic Exchange PPN/BIL/2018/1/00049/U/00001.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borzová-Molnárová, J., Halčinová, L., Hutník, O.: Probabilistic-valued decomposable set functions with respect to triangle functions. Inf. Sci. 295, 347–357 (2015)
Bukovský, L.: The Structure of the Real Line. Monografie Matematyczne. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0006-8
Cobzaş, S.: Completeness with respect to the probabilistic Pompeiu-Hausdorff metric. Stud. Univ. Babeş-Bolyai, Math. 52(3), 43–65 (2007)
Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)
Halčinová, L., Hutník, O.: An integral with respect to probabilistic-valued decomposable measures. Int. J. Approx. Reason. 55, 1469–1484 (2014)
Halčinová, L., Hutník, O., Mesiar, R.: On distance distribution functions-valued submeasures related to aggregation functions. Fuzzy Sets Syst. 194(1), 15–30 (2012)
Halčinová, L., Hutník, O., Mesiar, R.: On some classes of distance distribution functions-valued submeasures. Nonlinear Anal. 74(5), 1545–1554 (2011)
Halmos, P.: Measure Theory. Van Nostrand, New York (1968)
Hutník, O., Mesiar, R.: On a certain class of submeasures based on triangular norms. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 17, 297–316 (2009)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, Studia Logica Library, vol. 8. Kluwer Academic Publishers, Dordrecht (2000)
Jong, S.K., Sung, L.K., Yang, H.K., Yu, S.J.J.: Generalized convolution of uniform distributions. Appl. Math. Inform. 28, 1573–1581 (2010)
Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. U.S.A. 28, 535–537 (1942)
Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics. McGraw-Hill, New York (1974)
Moore, R.E., Bierbaum, F.: Methods and Applications of Interval Analysis. Studies in Applied and Numerical Mathematics. SIAM, Philadelphia (1979)
Pap, E.: Applications of decomposable measures on nonlinear differential equations. Novi Sad J. Math. 31, 89–98 (2001)
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland Publishing, New York (1983)
Šerstnev, A.N.: Random normed spaces: problems of completeness. Kazan. Gos. Univ. Uch. Zap. 122, 3–20 (1962)
Torra, V., Navarro-Arribas, G.: Probabilistic metric spaces for privacy by design machine learning algorithms: modeling database changes. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Livraga, G., Rios, R. (eds.) DPM/CBT -2018. LNCS, vol. 11025, pp. 422–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00305-0_30
Weber, S.: \(\perp \)-decomposable measures and integrals for Archimedean t-conorm. J. Math. Anal. Appl. 101, 114–138 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Boczek, M., Halčinová, L., Hutník, O., Kaluszka, M. (2020). Probabilistic Measures and Integrals: How to Aggregate Imprecise Data. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-57524-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57523-6
Online ISBN: 978-3-030-57524-3
eBook Packages: Computer ScienceComputer Science (R0)