Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation Algorithm for the Balanced 2-correlation Clustering Problem on Well-Proportional Graphs

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12290))

Included in the following conference series:

Abstract

In this paper, we consider the balanced 2-correlation clustering problem on well-proportional graphs, which has applications in protein interaction networks, cross-lingual link detection, communication networks, among many others. Given a complete graph \(G=(V,E)\) with each edge \((u,v)\in E\) labeled by \(+\) or −, the goal is to partition the vertices into two clusters of equal size to minimize the number of positive edges whose endpoints lie in different clusters plus the number of negative edges whose endpoints lie in the same cluster. We provide a \((3,\max \{4(M+1),16\})\)-balanced approximation algorithm for the balanced 2-correlation clustering problem on M-proportional graphs. Namely, the cost of the vertex partition \(\{V_1, V_2\}\) returned by the algorithm is at most \(\max \{4(M+1),16\}\) times the optimum solution, and \(\min \{|V_1|,|V_2|\} \le 3\max \{|V_1|\), \( |V_2|\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achtert, E., B\(\ddot{\rm o}\)hm, C., David, J., Kr\(\ddot{\rm o}\)ger, P., Zimek, A.: Global correlation clustering based on the Hough transform. Stat. Anal. Data Mining 1, 111–127 (2010)

    Google Scholar 

  2. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. In: Proceedings of FOCS, pp. 61–72 (2017)

    Google Scholar 

  3. Ahn, K.J., Cormode, G., Guha, S., Mcgregor, A., Wirth, A.: Correlation clustering in data streams. In: Proceedings of ICML, pp. 2237–2246 (2015)

    Google Scholar 

  4. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algorithms for bipartite correlation clustering. SIAM J. Comput. 41, 1110–1121 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5) (2008). Article No. 23

    Google Scholar 

  6. Amit, N.: The bicluster graph editing problem. Diss, Tel Aviv University (2004)

    Google Scholar 

  7. Arthur, D., Vassilvitskii, S.: \(k\)-Means++: the advantages of careful seeding. In: Proceedings of SODA, pp. 1027–1035 (2007)

    Google Scholar 

  8. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)

    Article  MathSciNet  Google Scholar 

  9. Behsaz, B., Friggstad, Z., Salavatipour, M.R., Sivakumar, R.: Approximation algorithms for min-sum k-clustering and balanced k-median. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 116–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_10

    Chapter  MATH  Google Scholar 

  10. Bonchi, F.: Overlapping correlation clustering. Knowl. Inf. Syst. 35, 1–32 (2013)

    Google Scholar 

  11. Braverman, V., Lang, H., Levin, K., Monemizadeh, M.: Clustering problems on sliding windows. In: Proceedings of SODA, pp. 1374–1390 (2016)

    Google Scholar 

  12. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algorithms for hard capacitated \(k\)-median problems. In: Proceedings of SODA, pp. 722–736 (2015)

    Google Scholar 

  13. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71, 360–383 (2005)

    Article  MathSciNet  Google Scholar 

  14. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlation clustering on complete and complete \(k\)-partite graphs. In: Proceedings of STOC, pp. 219–228 (2015)

    Google Scholar 

  15. Demaine, E., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theoret. Comput. Sci. 361, 172–187 (2006)

    Article  MathSciNet  Google Scholar 

  16. Frieze, A., Jerrum, M.: Improved approximation algorithms for max \(k\)-cut and max bisection. Algorithmica 18, 67–81 (1997)

    Article  MathSciNet  Google Scholar 

  17. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In: Proceedings of SODA, pp. 1167–1176 (2006)

    Google Scholar 

  18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  19. Hendrickx, J.M., Tsitsiklis, J.N.: Convergence of type-symmetric and cut-balanced consensus seeking systems. IEEE Trans. Autom. Control 58, 214–218 (2013)

    Article  MathSciNet  Google Scholar 

  20. Ji, S., Xu, D., Li, M., Wang, Y.: Approximation algorithm for the correlation clustering problem with non-uniform hard constrained cluster sizes. In: Du, D.-Z., Li, L., Sun, X., Zhang, J. (eds.) AAIM 2019. LNCS, vol. 11640, pp. 159–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27195-4_15

    Chapter  Google Scholar 

  21. Kuila, P., Jana, P.K.: Approximation schemes for load balanced clustering in wireless sensor networks. J. Supercomput. 68(1), 87–105 (2013). https://doi.org/10.1007/s11227-013-1024-6

    Article  Google Scholar 

  22. Li, S.: On uniform capacitated \(k\)-median beyond the natural LP relaxation. ACM Trans. Algorithms 13(2) (2017). Article No. 22

    Google Scholar 

  23. Li, M., Xu, D., Zhang, D., Zhang, T.: A streaming algorithm for \(k\)-means with approximate coreset. Asia Pacific J. Oper. Res. 36(01), 1950006 (2019)

    Article  MathSciNet  Google Scholar 

  24. Liao, Y., Qi, H., Li, W.: Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sens. J. 13, 1498–1506 (2013)

    Article  Google Scholar 

  25. Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. Comput. Stat. 21, 211–229 (2010)

    MATH  Google Scholar 

  26. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of SODA, pp. 712–728 (2010)

    Google Scholar 

  27. Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and extended weights bounds. SIAM J. Optim. 25, 1857–1872 (2015)

    Article  MathSciNet  Google Scholar 

  28. Puleo, G.J., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. IEEE Trans. Inf. Theory 64, 4105–4119 (2018)

    Article  MathSciNet  Google Scholar 

  29. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144, 173–182 (2004)

    Article  MathSciNet  Google Scholar 

  30. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of SODA, pp. 526–527 (2004)

    Google Scholar 

  31. Zhao, M., Yang, Y., Wang, C.: Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Trans. Mob. Comput. 14, 770–785 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The first two authors are supported by National Natural Science Foundation of China (Nos. 11531014, 11871081). The third author is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 06446, and National Natural Science Foundation of China (Nos. 11771386, 11728104). The fourth author is supported by National Natural Science Foundation of China (No. 11201333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Gai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, S., Xu, D., Du, D., Gai, L. (2020). Approximation Algorithm for the Balanced 2-correlation Clustering Problem on Well-Proportional Graphs. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57602-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57601-1

  • Online ISBN: 978-3-030-57602-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics