Abstract
In this paper, we consider the balanced 2-correlation clustering problem on well-proportional graphs, which has applications in protein interaction networks, cross-lingual link detection, communication networks, among many others. Given a complete graph \(G=(V,E)\) with each edge \((u,v)\in E\) labeled by \(+\) or −, the goal is to partition the vertices into two clusters of equal size to minimize the number of positive edges whose endpoints lie in different clusters plus the number of negative edges whose endpoints lie in the same cluster. We provide a \((3,\max \{4(M+1),16\})\)-balanced approximation algorithm for the balanced 2-correlation clustering problem on M-proportional graphs. Namely, the cost of the vertex partition \(\{V_1, V_2\}\) returned by the algorithm is at most \(\max \{4(M+1),16\}\) times the optimum solution, and \(\min \{|V_1|,|V_2|\} \le 3\max \{|V_1|\), \( |V_2|\}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achtert, E., B\(\ddot{\rm o}\)hm, C., David, J., Kr\(\ddot{\rm o}\)ger, P., Zimek, A.: Global correlation clustering based on the Hough transform. Stat. Anal. Data Mining 1, 111–127 (2010)
Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. In: Proceedings of FOCS, pp. 61–72 (2017)
Ahn, K.J., Cormode, G., Guha, S., Mcgregor, A., Wirth, A.: Correlation clustering in data streams. In: Proceedings of ICML, pp. 2237–2246 (2015)
Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algorithms for bipartite correlation clustering. SIAM J. Comput. 41, 1110–1121 (2012)
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5) (2008). Article No. 23
Amit, N.: The bicluster graph editing problem. Diss, Tel Aviv University (2004)
Arthur, D., Vassilvitskii, S.: \(k\)-Means++: the advantages of careful seeding. In: Proceedings of SODA, pp. 1027–1035 (2007)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)
Behsaz, B., Friggstad, Z., Salavatipour, M.R., Sivakumar, R.: Approximation algorithms for min-sum k-clustering and balanced k-median. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 116–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_10
Bonchi, F.: Overlapping correlation clustering. Knowl. Inf. Syst. 35, 1–32 (2013)
Braverman, V., Lang, H., Levin, K., Monemizadeh, M.: Clustering problems on sliding windows. In: Proceedings of SODA, pp. 1374–1390 (2016)
Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algorithms for hard capacitated \(k\)-median problems. In: Proceedings of SODA, pp. 722–736 (2015)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71, 360–383 (2005)
Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlation clustering on complete and complete \(k\)-partite graphs. In: Proceedings of STOC, pp. 219–228 (2015)
Demaine, E., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theoret. Comput. Sci. 361, 172–187 (2006)
Frieze, A., Jerrum, M.: Improved approximation algorithms for max \(k\)-cut and max bisection. Algorithmica 18, 67–81 (1997)
Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In: Proceedings of SODA, pp. 1167–1176 (2006)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
Hendrickx, J.M., Tsitsiklis, J.N.: Convergence of type-symmetric and cut-balanced consensus seeking systems. IEEE Trans. Autom. Control 58, 214–218 (2013)
Ji, S., Xu, D., Li, M., Wang, Y.: Approximation algorithm for the correlation clustering problem with non-uniform hard constrained cluster sizes. In: Du, D.-Z., Li, L., Sun, X., Zhang, J. (eds.) AAIM 2019. LNCS, vol. 11640, pp. 159–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27195-4_15
Kuila, P., Jana, P.K.: Approximation schemes for load balanced clustering in wireless sensor networks. J. Supercomput. 68(1), 87–105 (2013). https://doi.org/10.1007/s11227-013-1024-6
Li, S.: On uniform capacitated \(k\)-median beyond the natural LP relaxation. ACM Trans. Algorithms 13(2) (2017). Article No. 22
Li, M., Xu, D., Zhang, D., Zhang, T.: A streaming algorithm for \(k\)-means with approximate coreset. Asia Pacific J. Oper. Res. 36(01), 1950006 (2019)
Liao, Y., Qi, H., Li, W.: Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sens. J. 13, 1498–1506 (2013)
Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. Comput. Stat. 21, 211–229 (2010)
Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of SODA, pp. 712–728 (2010)
Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and extended weights bounds. SIAM J. Optim. 25, 1857–1872 (2015)
Puleo, G.J., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. IEEE Trans. Inf. Theory 64, 4105–4119 (2018)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144, 173–182 (2004)
Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of SODA, pp. 526–527 (2004)
Zhao, M., Yang, Y., Wang, C.: Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Trans. Mob. Comput. 14, 770–785 (2015)
Acknowledgements
The first two authors are supported by National Natural Science Foundation of China (Nos. 11531014, 11871081). The third author is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 06446, and National Natural Science Foundation of China (Nos. 11771386, 11728104). The fourth author is supported by National Natural Science Foundation of China (No. 11201333).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ji, S., Xu, D., Du, D., Gai, L. (2020). Approximation Algorithm for the Balanced 2-correlation Clustering Problem on Well-Proportional Graphs. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-57602-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57601-1
Online ISBN: 978-3-030-57602-8
eBook Packages: Computer ScienceComputer Science (R0)