Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

A preliminary many objective algorithm for extracting fuzzy emerging patterns is presented in this contribution. The proposed algorithm employs fuzzy logic together with an evolutionary algorithm. The aim is to expand the complex search space that we have in emerging pattern mining.

The experimental study presented in this paper faces this new proposal regarding an ensemble of one of the most used algorithms within supervised descriptive rule discovery. Results presents a set of patterns with a major interpretability and precision for the new proposal which could be interesting for experts in real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://jmetal.github.io/jMetal/.

  2. 2.

    https://simidat.ujaen.es/papers/ManyObjectiveEFEP/.

References

  1. Carmona, C.J., Chrysostomou, C., Seker, H., del Jesus, M.J.: Fuzzy rules for describing subgroups from influenza a virus using a multi-objective evolutionary algorithm. Appl. Soft Comput. 13(8), 3439–3448 (2013)

    Article  Google Scholar 

  2. Carmona, C.J., González, P., García-Domingo, B., del Jesus, M.J., Aguilera, J.: MEFES: an evolutionary proposal for the detection of exceptions in subgroup discovery. An application to concentrating photovoltaic technology. Knowl.-Based Syst. 54, 73–85 (2013)

    Article  Google Scholar 

  3. Carmona, C.J., González, P., del Jesus, M.J., Herrera, F.: Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms. WIREs Data Min. Knowl. Disc. 4(2), 87–103 (2014)

    Article  Google Scholar 

  4. Carmona, C.J., González, P., del Jesus, M.J., Navío, M., Jiménez, L.: Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft Comput. 15(12), 2435–2448 (2011)

    Article  Google Scholar 

  5. Carmona, C.J., del Jesus, M.J., Herrera, F.: A unifying analysis for the supervised descriptive rule discovery via the weighted relative accuracy. Knowl.-Based Syst. 139, 89–100 (2018)

    Article  Google Scholar 

  6. Carmona, C.J., Ramírez-Gallego, S., Torres, F., Bernal, E., del Jesus, M.J., García, S.: Web usage mining to improve the design of an e-commerce website: OrOliveSur.com. Expert Syst. Appl. 39, 11243–11249 (2012)

    Article  Google Scholar 

  7. Carmona, C.J., Ruiz-Rodado, V., del Jesus, M.J., Weber, A., Grootveld, M., González, P., Elizondo, D.: A fuzzy genetic programming-based algorithm for subgroup discovery and the application to one problem of pathogenesis of acute sore throat conditions in humans. Inf. Sci. 298, 180–197 (2015)

    Article  Google Scholar 

  8. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Willey & Sons, Hoboken (2001)

    MATH  Google Scholar 

  9. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  10. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  11. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 43–52. ACM (1999)

    Google Scholar 

  12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Springer, Berlin (2003)

    Book  Google Scholar 

  13. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in knowledge discovery and data mining, AAAI/MIT Press, Menlo Park, CA, USA, pp. 1–34 (1996)

    Google Scholar 

  14. Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., Herrera, F.: Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study. IEEE Trans. Evol. Comput. 14(6), 913–941 (2010)

    Article  Google Scholar 

  15. Fogel, D.B.: Evolutionary Computation - Toward a New Philosophy of Machine Intelligence. IEEE Press, New York (1995)

    MATH  Google Scholar 

  16. Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: methodology and application. J. Artif. Intell. Res. 17, 501–527 (2002)

    Article  Google Scholar 

  17. García-Borroto, M., Loyola-Gonzalez, O., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: Comparing Quality Measures for Contrast Pattern Classifiers, pp. 311–318. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  18. García-Borroto, M., Loyola-González, O., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: Evaluation of quality measures for contrast patterns by using unseen objects. Expert Syst. Appl. 83, 104–113 (2017)

    Article  Google Scholar 

  19. García-Vico, A.M., Carmona, C.J., González, P., del Jesus, M.J.: MOEA-EFEP: multi-objective evolutionary algorithm for extracting fuzzy emerging patterns. IEEE Trans. Fuzzy Syst. 26(5), 2861–2872 (2018)

    Article  Google Scholar 

  20. García-Vico, A.M., Carmona, C.J., Martín, D., García-Borroto, M., del Jesus, M.J.: An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends and prospects. WIREs: Data Min. Knowl. Disc. 8(1), e1231 (2018)

    Google Scholar 

  21. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc. (1989)

    Google Scholar 

  22. Herrera, F.: Genetic fuzzy systems: taxomony, current research trends and prospects. Evol. Intell. 1, 27–46 (2008)

    Article  Google Scholar 

  23. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  24. Hüllermeier, E.: Fuzzy sets in machine learning and data mining. Appl. Soft Comput. 11(2), 1493–1505 (2011)

    Article  Google Scholar 

  25. Kloesgen, W.: Explora: a multipattern and multistrategy discovery assistant. Advances in Knowledge Discovery and Data Mining, pp. 249–271. American Association for Artificial Intelligence, Menlo Park, CA, USA (1996)

    Google Scholar 

  26. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  27. Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-generation Computer Technology Series, Wiley (1995)

    Google Scholar 

  28. Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning. Parts I, II, III. Inf. Sci. 8-9, 43–80, 199–249, 301–357 (1975)

    Google Scholar 

Download references

Acknowledgement

This study was funded by the FPI 2016 Scholarship reference BES-2016-077738 (FEDER Founds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristobal J. Carmona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia-Vico, A.M., Carmona, C.J., Gonzalez, P., del Jesus, M.J. (2021). A Preliminary Many Objective Approach for Extracting Fuzzy Emerging Patterns. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_10

Download citation

Publish with us

Policies and ethics