Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Automatic Guided Vehicles (AGV) suffer degradation in their electro-mechanical components which affect the navigation performance over time. The use of intelligent control techniques can help to alleviate this issue. In this work a new approach to control an AGV based on reinforcement learning (RL) is proposed. The space of states is defined using the guiding error, and the set of control actions provides the reference for the velocities of each wheel. Two different reward strategies are implemented, and different updating policies are tested. Simulation results show how the RL controller is able to successfully track a complex trajectory. The controller has been compared with a PID obtaining better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bechtsis, D., Tsolakis, N., Vouzas, M., Vlachos, D.: Industry 4.0: sustainable material handling processes in industrial environments. In: Computer Aided Chemical Engineering, vol. 40, pp. 2281–2286. Elsevier (2017)

    Google Scholar 

  2. Theunissen, J., Xu, H., Zhong, R.Y., Xu, X.: Smart AGV system for manufacturing shopfloor in the context of industry 4.0. In: 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE, November 2018

    Google Scholar 

  3. Sierra, J.E., Santos, M.: Modelling engineering systems using analytical and neural techniques: hybridization. Neurocomputing 271, 70–83 (2018)

    Article  Google Scholar 

  4. Santos, M., López, V., Botella, G.: Dyna-H: a heuristic planning reinforcement learning algorithm applied to role-playing game strategy decision systems. Knowl. Based Syst. 32, 28–36 (2012)

    Article  Google Scholar 

  5. Martín-H, J.A., de Lope, J., Santos, M.: A method to learn the inverse kinematics of multi-link robots by evolving neuro-controllers. Neurocomputing 72(13–15), 2806–2814 (2009)

    Google Scholar 

  6. Santos, M.: An applied approach of intelligent control. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(4), 283–296 (2011)

    Article  Google Scholar 

  7. Maxwell, W.L., Muckstadt, J.A.: Design of automatic guided vehicle systems. IIE Trans. 14, 114–124 (1982)

    Google Scholar 

  8. Bonilla, M., Reyes, F., Mendoza, M.: Modelling and simulation of a wheeled mobile robot in configuration classical tricycle. In: Proceedings of 5th WSEASA International Conference on Instrumentation, Measurement, Control, Circuits and Systems (2005)

    Google Scholar 

  9. Villagra, J., Herrero-Pérez, D.: A comparison of control techniques for robust docking maneuvers of an AGV. IEEE Trans. Control Syst. Technol. 20(4), 1116–1123 (2011)

    Article  Google Scholar 

  10. Espinosa Zapata, F., Lázaro Galilea, J.L., Olivares Bueno, J.: ALCOR project: contributions to optimizing remote robot guidance in intelligent spaces. Revista Iberoamericana de Automática e Informática Industrial 15(4), 416–426 (2018)

    Google Scholar 

  11. Durrant-Whyte, H., Rye, D., Nebot, E.: Localization of autonomous guided vehicles. In: Robotics Research, pp. 613–625. Springer, London (1996)

    Google Scholar 

  12. Aligia, D.A., Magallán, G.A., De Angelo, C.H.: Traction control of an electric vehicle based on nonlinear observers. Revista Iberoamericana de Automática e Informática Industrial 15(1), 112–123 (2018)

    Article  Google Scholar 

  13. Xue, T., Zeng, P., Yu, H.: A reinforcement learning method for multi-AGV scheduling in manufacturing. In: 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 1557–1561. IEEE, February 2018

    Google Scholar 

  14. Vis, I.F.: Survey of research in the design and control of automated guided vehicle systems. Eur. J. Oper. Res. 170(3), 677–709 (2006)

    Article  MathSciNet  Google Scholar 

  15. ASTI Mobile Robotics 2020. https://www.astimobilerobotics.com/

  16. Oriolo, G.: Control of nonholonomic systems (2019). https://www.dis.uniroma1.it/~oriolo/cns/cns_slides.pdf

  17. Alvarez-Ramos, C.M., Santos, M., López, V.: Reinforcement learning vs. A* in a role playing game benchmark scenario. In: Computational Intelligence: Foundations and Applications, pp. 644–650 (2010)

    Google Scholar 

  18. Chen, C., Dong, D., Li, H.X., Chu, J., Tarn, T.J.: Fidelity-based probabilistic Q-learning for control of quantum systems. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 920–933 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sierra-García, J.E., Santos, M. (2021). Control of Industrial AGV Based on Reinforcement Learning. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_62

Download citation

Publish with us

Policies and ethics