Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biometric-Authenticated Searchable Encryption

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12147))

Included in the following conference series:

Abstract

We introduce Biometric-Authenticated Keyword Search (BAKS), a novel searchable encryption scheme that relieves clients from managing cryptographic keys and relies purely on client’s biometric data for authenticated outsourcing and retrieval of files indexed by encrypted keywords.

BAKS utilises distributed trust across two servers and the liveness assumption which models physical presence of the client; in particular, BAKS security is guaranteed even if clients’ biometric data, which often has low entropy, becomes public. We formalise two security properties, Authentication and Indistinguishability against Chosen Keyword Attacks, which ensure that only a client with a biometric input sufficiently close to the registered template is considered legitimate and that neither of the two servers involved can learn any information about the encrypted keywords.

Our BAKS construction further supports outsourcing and retrieval of files using multiple keywords and flexible search queries (e.g., conjunction, disjunction and subset-type queries). An additional update mechanism allows clients to replace their registered biometrics without requiring re-encryption of outsourced keywords, which enables smooth user migration across devices supporting different types of biometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biometric presentation attack detection: Standard ISO/IEC WD 30107–3:2017. International Organization for Standardization, Geneva, CH (2017)

    Google Scholar 

  2. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391 (2007). https://doi.org/10.1007/s00145-007-9006-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhtar, Z., Micheloni, C., Foresti, G.L.: Biometric liveness detection: challenges and research opportunities. IEEE Secur. Priv. 13(5), 63–72 (2015)

    Article  Google Scholar 

  4. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005). https://doi.org/10.1007/11602897_35

    Chapter  Google Scholar 

  5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    Chapter  Google Scholar 

  6. Blanton, M., Hudelson, W.M.P.: Biometric-based non-transferable anonymous credentials. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 165–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11145-7_14

    Chapter  Google Scholar 

  7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  9. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM CCS 2004, pp. 82–91. ACM (2004)

    Google Scholar 

  10. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_9

    Chapter  Google Scholar 

  11. Bringer, J., Chabanne, H., Kindarji, B.: Error-tolerant searchable encryption. In: IEEE ICC 2009, pp. 1–6 (2009)

    Google Scholar 

  12. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.: Memento: how to reconstruct your secrets from a single password in a hostile environment. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 256–275. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_15

    Chapter  MATH  Google Scholar 

  13. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_5

    Chapter  Google Scholar 

  14. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015, pp. 668–679. ACM (2015)

    Google Scholar 

  15. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20

    Chapter  Google Scholar 

  16. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption with keyword search for secure cloud storage. Trans. Inf. Forensics Secur. 11(4), 789–798 (2016)

    Google Scholar 

  17. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011). A preliminary version appeared in ACM CCS 2006

    Article  Google Scholar 

  18. Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  19. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_14

    Chapter  Google Scholar 

  20. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  21. FIDO Alliance: FIDO 2.0. Technical report (2015). https://fidoalliance.org/specifications. Accessed 03 Mar 2019

  22. Fleischhacker, N., Manulis, M., Azodi, A.: A modular framework for multi-factor authentication and key exchange. In: Chen, L., Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 190–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14054-4_12

    Chapter  Google Scholar 

  23. Fuller, B., Simhadri, S., Steel, J.: Reusable authentication from the iris. Cryptology ePrint Archive, Report 2017/1177 (2017). https://eprint.iacr.org/2017/1177

  24. Gardham, D., Drăgan, C-C., Manulis, M.: Biometric Authenticated Searchable Encryption. Cryptology ePrint Archive, Report 2020/017 (2020). https://eprint.iacr.org/2020/017

  25. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  Google Scholar 

  26. Huang, K., Manulis, M., Chen, L.: Password authenticated keyword search. In: PAC 2017, pp. 129–140 (2017)

    Google Scholar 

  27. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: Ramification, attack and mitigation. In: NDSS 2012 (2012)

    Google Scholar 

  28. Jain, A.K., Ross, A., Prabhakar, S.: Fingerprint matching using minutiae and texture features. In: ICIP 2001, pp. 282–285 (2001)

    Google Scholar 

  29. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS 1999, pp. 28–36 (1999)

    Google Scholar 

  30. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure outsourced databases. In: ACM CCS 2016, pp. 1329–1340 (2016)

    Google Scholar 

  31. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_34

    Chapter  Google Scholar 

  32. Kuchta, V., Manulis, M.: Public key encryption with distributed keyword search. In: Yung, M., Zhang, J., Yang, Z. (eds.) INTRUST 2015. LNCS, vol. 9565, pp. 62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31550-8_5

    Chapter  Google Scholar 

  33. Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryption: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

    Article  Google Scholar 

  34. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  Google Scholar 

  35. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted databases. In: ACM SIGSAC 2015, pp. 644–655 (2015)

    Google Scholar 

  36. O’Gorman, L.: Comparing passwords, tokens, and biometrics for user authentication. Proc. IEEE 91(12), 2021–2040 (2003)

    Article  Google Scholar 

  37. Örencik, C., Selcuk, A., Savas, E., Kantarcioglu, M.: Multi-keyword search over encrypted data with scoring and search pattern obfuscation. Int. J. Inf. Secur. 15(3), 251–269 (2016)

    Article  Google Scholar 

  38. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6_7

    Chapter  Google Scholar 

  39. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  40. Pointcheval, D., Zimmer, S.: Multi-factor authenticated key exchange. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 277–295. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_17

    Chapter  Google Scholar 

  41. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Priv. 1(2), 33–42 (2003)

    Article  Google Scholar 

  42. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: ACM CCS 2007, pp. 172–184 (2007)

    Google Scholar 

  43. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  44. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS 2014. The Internet Society (2014)

    Google Scholar 

  45. Yi, X., Hao, F., Chen, L., Liu, J.K.: Practical threshold password-authenticated secret sharing protocol. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 347–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_18

    Chapter  Google Scholar 

  46. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. USENIX Secur. 2016, 707–720 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gardham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gardham, D., Manulis, M., Drăgan, C.C. (2020). Biometric-Authenticated Searchable Encryption. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12147. Springer, Cham. https://doi.org/10.1007/978-3-030-57878-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57878-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57877-0

  • Online ISBN: 978-3-030-57878-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics