Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Mathematical Applications of Majorization Inequalities to Quantum Mechanics

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12239))

Included in the following conference series:

Abstract

We supplement some foundational theorems which connect majorization inequalities with quantum mechanics. To begin, we give the sufficient condition for bi-partite pure states entanglement transformation from the control to the controlled states which are impossible to be transformed even by catalysts. Furthermore, a sufficient and necessary condition about the existence of an entangled assisted state is discussed. Also, the sufficient and necessary condition to give rise to the same given ensemble for a group of vectors is demonstrated. At last, owing to the unique distinguishability of orthogonal states, it is natural to establish local distinguishability of two bi-partite orthogonal quantum states by using ensembles of majorization in LOCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  Google Scholar 

  2. Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)

    Article  MathSciNet  Google Scholar 

  3. Duan, R., Feng, Y., Ying, M.: Local distinguishability of multipartite unitary operations. Phys. Rev. Lett. 100(2), 020503 (2008)

    Article  Google Scholar 

  4. Duan, R., Feng, Y., Ying, M.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103(21), 210501 (2009)

    Article  MathSciNet  Google Scholar 

  5. Dou, Z., Xu, G., Chen, X.B., Yuan, K.: Rational non-hierarchical quantum state sharing protocol. Comput. Mater. Contin. 58(2), 335–347 (2019)

    Article  Google Scholar 

  6. Feng, Y., Duan, R., Ying, M.: Catalyst-assisted probabilistic entanglement transformation. IEEE Trans. Inf. Theory 51(3), 1090–1101 (2005)

    Article  MathSciNet  Google Scholar 

  7. Henderson, L., Vedral, V.: Classical, quantum and total correlations. Phys. Rev. A 34(35), 6899–6905 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Jonathan, D., Plenio, M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83(17), 3566–3569 (2012)

    Article  MathSciNet  Google Scholar 

  9. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. Roy. Soc. A-Math. Phys. 459(2036), 2011–2032 (2003)

    Article  MathSciNet  Google Scholar 

  10. Li, Y., Qiao, Y., Wang, X., Duan, R.: Tripartite-to-bipartite entanglement transformation by stochastic local operations and classical communication and the structure of matrix spaces. Commun. Math. Phys. 358(2), 791–814 (2018). https://doi.org/10.1007/s00220-017-3077-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic Press, Cambridge (1979)

    MATH  Google Scholar 

  12. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436–439 (1998)

    Article  Google Scholar 

  13. Nielsen, M.A.: An introduction to majorization and its applications to quantum mechanics. Lecture Notes (2002)

    Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  15. Partovi, M.H.: Majorization formulation of uncertainty in quantum mechanics. Phys. Rev. A 84(5), 13724–13731 (2011)

    Article  Google Scholar 

  16. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  MathSciNet  Google Scholar 

  17. Sun, X., Duan, R., Ying, M.: The existence of quantum entanglement catalysts. IEEE Trans. Inf. Theory 51(1), 75–80 (2005)

    Article  MathSciNet  Google Scholar 

  18. Xiao, H., Zhang, J., Huang, W.H., Zhou, M., Hu, W.C.: An efficient quantum key distribution protocol with dense coding on single photons. Comput. Mater. Contin. 61(2), 759–775 (2019)

    Article  Google Scholar 

  19. Walgate, J., Short, A.J., Hardy, L., Vedral, V.V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972–4975 (2000)

    Article  Google Scholar 

  20. Zhang, S.B., Chang, Y., Yan, L., Sheng, Z.W., Yang, F.: Quantum communication networks and trust management: a survey. Comput. Mater. Contin. 61(3), 1145–1174 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanwu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, M., Liu, Z., Chen, H., Zheng, S. (2020). The Mathematical Applications of Majorization Inequalities to Quantum Mechanics. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12239. Springer, Cham. https://doi.org/10.1007/978-3-030-57884-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57884-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57883-1

  • Online ISBN: 978-3-030-57884-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics