Abstract
We supplement some foundational theorems which connect majorization inequalities with quantum mechanics. To begin, we give the sufficient condition for bi-partite pure states entanglement transformation from the control to the controlled states which are impossible to be transformed even by catalysts. Furthermore, a sufficient and necessary condition about the existence of an entangled assisted state is discussed. Also, the sufficient and necessary condition to give rise to the same given ensemble for a group of vectors is demonstrated. At last, owing to the unique distinguishability of orthogonal states, it is natural to establish local distinguishability of two bi-partite orthogonal quantum states by using ensembles of majorization in LOCC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)
Duan, R., Feng, Y., Ying, M.: Local distinguishability of multipartite unitary operations. Phys. Rev. Lett. 100(2), 020503 (2008)
Duan, R., Feng, Y., Ying, M.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103(21), 210501 (2009)
Dou, Z., Xu, G., Chen, X.B., Yuan, K.: Rational non-hierarchical quantum state sharing protocol. Comput. Mater. Contin. 58(2), 335–347 (2019)
Feng, Y., Duan, R., Ying, M.: Catalyst-assisted probabilistic entanglement transformation. IEEE Trans. Inf. Theory 51(3), 1090–1101 (2005)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. Phys. Rev. A 34(35), 6899–6905 (2001)
Jonathan, D., Plenio, M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83(17), 3566–3569 (2012)
Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. Roy. Soc. A-Math. Phys. 459(2036), 2011–2032 (2003)
Li, Y., Qiao, Y., Wang, X., Duan, R.: Tripartite-to-bipartite entanglement transformation by stochastic local operations and classical communication and the structure of matrix spaces. Commun. Math. Phys. 358(2), 791–814 (2018). https://doi.org/10.1007/s00220-017-3077-5
Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic Press, Cambridge (1979)
Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436–439 (1998)
Nielsen, M.A.: An introduction to majorization and its applications to quantum mechanics. Lecture Notes (2002)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, Cambridge (2011)
Partovi, M.H.: Majorization formulation of uncertainty in quantum mechanics. Phys. Rev. A 84(5), 13724–13731 (2011)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)
Sun, X., Duan, R., Ying, M.: The existence of quantum entanglement catalysts. IEEE Trans. Inf. Theory 51(1), 75–80 (2005)
Xiao, H., Zhang, J., Huang, W.H., Zhou, M., Hu, W.C.: An efficient quantum key distribution protocol with dense coding on single photons. Comput. Mater. Contin. 61(2), 759–775 (2019)
Walgate, J., Short, A.J., Hardy, L., Vedral, V.V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972–4975 (2000)
Zhang, S.B., Chang, Y., Yan, L., Sheng, Z.W., Yang, F.: Quantum communication networks and trust management: a survey. Comput. Mater. Contin. 61(3), 1145–1174 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, M., Liu, Z., Chen, H., Zheng, S. (2020). The Mathematical Applications of Majorization Inequalities to Quantum Mechanics. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12239. Springer, Cham. https://doi.org/10.1007/978-3-030-57884-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-57884-8_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57883-1
Online ISBN: 978-3-030-57884-8
eBook Packages: Computer ScienceComputer Science (R0)