Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comparison of Multi-channel Ranging Algorithms for Narrowband LPWA Network Localization

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12293))

Included in the following conference series:

  • 364 Accesses

Abstract

Accurate radio signal based localization for Low Power Wide Area networks enables ubiquitous positioning for the Internet of Things. Narrowband communication and multipath propagation make precise localization challenging. Coherent multi-channel ranging increases bandwidth and provides improved temporal resolution through the aggregation of sequentially transmitted narrowband signals. This paper applies parametric estimators as well as a deep learning technique to multi-channel measurements obtained with 10 kHz signals. Ranging performances are compared via numerical simulations and real outdoor field trials, where parametric estimation and deep learning achieve 60 m and 45 m accuracy in \(90\%\) of the cases, respectively. Further work is required to study the impact of deep neural network training with a combination of synthetic and real data. Future research may also include the adaptation of multi-channel localization to differential network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In practice, evaluation is performed by cross correlation with \(s_{\text {0}}\) in time domain [8].

  2. 2.

    Analog Devices AD9361 \(2\times 2 \mathrm {TRX}\) radio front end and a Zynq-045 Xilinx System on chip FPGA with integrated dual Cortex-A9 ARM processor.

  3. 3.

    uBlox C94-M8P application board.

References

  1. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: an overview. IEEE Commun. Surv. Tutor. 19(2), 855–873 (2017). https://doi.org/10.1109/COMST.2017.2652320

    Article  Google Scholar 

  2. Razavi, S.M., et al.: Positioning in cellular networks: past, present, future. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, April 2018. https://doi.org/10.1109/WCNC.2018.8377447

  3. Link Labs: Lora Localization (2016). https://www.link-labs.com/blog/lora-localization

  4. Gotthard, P., Jankech, T.: Low-cost car park localization using RSSI in supervised LoRa mesh networks. In: 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6, October 2018. https://doi.org/10.1109/WPNC.2018.8555792

  5. Aernouts, M., Bellekens, B., Berkvens, R., Weyn, M.: A comparison of signal strength localization methods with sigfox. In: 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6, October 2018. https://doi.org/10.1109/WPNC.2018.8555743

  6. Skolnik, M.: Radar Handbook, 2nd edn. McGrawHill, New York City (1990)

    Google Scholar 

  7. Podevijn, N., et al.: TDoA-based outdoor positioning with tracking algorithm in a public LoRa network. Wirel. Commun. Mob. Comput. 2018, 9 (2018)

    Article  Google Scholar 

  8. Wolf, F., Dore, J.B., Popon, X., de Rivaz, S., Dehmas, F., Cances, J.P.: Coherent multi-channel ranging for narrowband LPWAN: simulation and experimentation results. In: 15th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6, October 2018

    Google Scholar 

  9. Vasisht, D., Kumar, S., Katabi, D.: Decimeter-level localization with a single WiFi access point (2016)

    Google Scholar 

  10. Pichler, M., Schwarzer, S., Stelzer, A., Vossiek, M.: Multi-channel distance measurement with IEEE 802.15.4 (ZigBee) devices. IEEE J. Sel. Top. Sig. Process. 3(5), 845–859 (2009). https://doi.org/10.1109/JSTSP.2009.2030935

  11. Schwarzer, S.: Entwicklung eines industriellen Funkortungssystems basierend auf der kohaerenten Kombination von Kommunikationssignalen mit IEEE-802.15.4-Geraeten. Ph.D. thesis, Technischen Universitaet Clausthal (2011)

    Google Scholar 

  12. Povalac, A., Sebesta, J.: Phase difference of arrival distance estimation for RFID tags in frequency domain. In: 2011 IEEE International Conference on RFID-Technologies and Applications. pp. 188–193, September 2011. https://doi.org/10.1109/RFID-TA.2011.6068636

  13. Liao, W., Fannjiang, A.: MUSIC for single-snapshot spectral estimation: stability and super-resolution. CoRR abs/1404.1484 (2014)

    Google Scholar 

  14. Li, X., Pahlavan, K.: Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Trans. Wirel. Commun. 3(1), 224–234 (2004). https://doi.org/10.1109/TWC.2003.819035

    Article  Google Scholar 

  15. Chehri, A., Fortier, P., Tardif, P.: On the TOA estimation for UWB ranging in complex confined area. In: 2007 International Symposium on Signals, Systems and Electronics, pp. 533–536, July 2007. https://doi.org/10.1109/ISSSE.2007.4294530

  16. Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 20(4), 2595–2621 (Fourthquarter 2018). https://doi.org/10.1109/COMST.2018.2846401

  17. Bialer, O., Garnett, N., Levi, D.: A deep neural network approach for time-of-arrival estimation in multipath channels. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2936–2940, April 2018. https://doi.org/10.1109/ICASSP.2018.8461301

  18. Niitsoo, A., Edelhäußer, T., Eberlein, E., Hadaschik, N., Mutschler, C.: A deep learning approach to position estimation from channel impulse responses. Sensors 19(5), 1064 (2019)

    Article  Google Scholar 

  19. Zappone, A., Di Renzo, M., Debbah, M., Lam, T.T., Qian, X.: Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks towards wireless systems optimization. arXiv preprint arXiv:1808.01672 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian Wolf , Mohamed Sana , Sébastien de Rivaz , François Dehmas or Jean-Pierre Cances .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolf, F., Sana, M., de Rivaz, S., Dehmas, F., Cances, JP. (2020). Comparison of Multi-channel Ranging Algorithms for Narrowband LPWA Network Localization. In: Habachi, O., Meghdadi, V., Sabir, E., Cances, JP. (eds) Ubiquitous Networking. UNet 2019. Lecture Notes in Computer Science(), vol 12293. Springer, Cham. https://doi.org/10.1007/978-3-030-58008-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58008-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58007-0

  • Online ISBN: 978-3-030-58008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics