Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

VoxelPose: Towards Multi-camera 3D Human Pose Estimation in Wild Environment

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

We present VoxelPose to estimate 3D poses of multiple people from multiple camera views. In contrast to the previous efforts which require to establish cross-view correspondence based on noisy and incomplete 2D pose estimates, VoxelPose directly operates in the 3D space therefore avoids making incorrect decisions in each camera view. To achieve this goal, features in all camera views are aggregated in the 3D voxel space and fed into Cuboid Proposal Network (CPN) to localize all people. Then we propose Pose Regression Network (PRN) to estimate a detailed 3D pose for each proposal. The approach is robust to occlusion which occurs frequently in practice. Without bells and whistles, it outperforms the previous methods on several public datasets.

This work is done when Hanyue Tu is an intern at Microsoft Research Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://youtu.be/qZAyHUzdpgw.

  2. 2.

    https://youtu.be/AgDQFIlL5IM.

  3. 3.

    https://youtu.be/S6G3TXaBukw.

References

  1. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures revisited: multiple human pose estimation. TPAMI 38(10), 1929–1942 (2015)

    Article  Google Scholar 

  2. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures for multiple human pose estimation. In: CVPR, pp. 1669–1676 (2014)

    Google Scholar 

  3. Belagiannis, V., Wang, X., Schiele, B., Fua, P., Ilic, S., Navab, N.: Multiple human pose estimation with temporally consistent 3D pictorial structures. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 742–754. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_52

    Chapter  Google Scholar 

  4. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views. In: CVPR, pp. 7792–7801 (2019)

    Google Scholar 

  5. Bridgeman, L., Volino, M., Guillemaut, J.Y., Hilton, A.: Multi-person 3D pose estimation and tracking in sports. In: CVPRW (2019)

    Google Scholar 

  6. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3D human pose estimation. In: ICCV, pp. 4342–4351 (2019)

    Google Scholar 

  7. Zhang, Y., An, L., Yu, T., Li, X., Li, K., Liu, Y.: 4D association graph for realtime multi-person motion capture using multiple video cameras. In: CVPR, pp. 1324–1333 (2020)

    Google Scholar 

  8. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR, pp. 7291–7299 (2017)

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  10. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Amin, S., Andriluka, M., Rohrbach, M., Schiele, B.: Multi-view pictorial structures for 3D human pose estimation. In: BMVC. Citeseer (2013)

    Google Scholar 

  12. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  13. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5693–5703 (2019)

    Google Scholar 

  14. Newell, A., Huang, Z., Deng, J.: Associative embedding: End-to-end learning for joint detection and grouping. In: NIPS, pp. 2277–2287 (2017)

    Google Scholar 

  15. Joo, H., et al.: Panoptic studio: a massively multiview system for social interaction capture. IEEE Trans. Pattern Anal. Mach. Intell. 41, 190–204 (2017)

    Article  Google Scholar 

  16. Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: CVPR, pp. 2361–2368 (2014)

    Google Scholar 

  17. Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41

    Chapter  Google Scholar 

  18. Zhou, X., Zhu, M., Leonardos, S., Daniilidis, K.: Sparse representation for 3d shape estimation: a convex relaxation approach. TPAMI 39(8), 1648–1661 (2016)

    Article  Google Scholar 

  19. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3d human pose estimation. In: CVPR. (2018) 7307–7316

    Google Scholar 

  20. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: ICCV (2017)

    Google Scholar 

  21. Moreno-Noguer, F.: 3D human pose estimation from a single image via distance matrix regression. In: CVPR, pp. 1561–1570. IEEE (2017)

    Google Scholar 

  22. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  23. Fang, H.S., Xu, Y., Wang, W., Liu, X., Zhu, S.C.: Learning pose grammar to encode human body configuration for 3D pose estimation. In: AAAI (2018)

    Google Scholar 

  24. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: CVPR (2019)

    Google Scholar 

  25. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  26. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: ICCV, pp. 7718–7727 (2019)

    Google Scholar 

  27. Remelli, E., Han, S., Honari, S., Fua, P., Wang, R.: Lightweight multi-view 3D pose estimation through camera-disentangled representation. In: CVPR, pp. 6040–6049 (2020)

    Google Scholar 

  28. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3d human pose. In: CVPR, pp. 1263–1272. IEEE (2017)

    Google Scholar 

  29. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3d human pose estimation in the wild: a weakly-supervised approach. In: ICCV (2017)

    Google Scholar 

  30. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net++: multi-person 2D and 3D pose detection in natural images. TPAMI 42, 1146–1161 (2019)

    Google Scholar 

  31. Kreiss, S., Bertoni, L., Alahi, A.: PifPaf: composite fields for human pose estimation. In: CVPR, pp. 11977–11986 (2019)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  33. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  34. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  35. Moon, G., Yong Chang, J., Mu Lee, K.: V2V-PoseNet: voxel-to-voxel prediction network for accurate 3d hand and human pose estimation from a single depth map. In: CVPR, pp. 5079–5088 (2018)

    Google Scholar 

  36. Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  37. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: posing face, body, and hands in the wild. In: CVPR, pp. 10965–10974 (2019)

    Google Scholar 

  38. Pishchulin, L., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: CVPR, pp. 4929–4937 (2016)

    Google Scholar 

  39. Ci, H., Wang, C., Ma, X., Wang, Y.: Optimizing network structure for 3D human pose estimation. In: ICCV (2019)

    Google Scholar 

  40. Ershadi-Nasab, S., Noury, E., Kasaei, S., Sanaei, E.: Multiple human 3D pose estimation from multiview images. Multimedia Tools Appl. 77(12), 15573–15601 (2018)

    Article  Google Scholar 

  41. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. T-PAMI 36(7), 1325–1339 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, H., Wang, C., Zeng, W. (2020). VoxelPose: Towards Multi-camera 3D Human Pose Estimation in Wild Environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics