Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Suppressing Mislabeled Data via Grouping and Self-attention

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12361))

Included in the following conference series:

Abstract

Deep networks achieve excellent results on large-scale clean data but degrade significantly when learning from noisy labels. To suppressing the impact of mislabeled data, this paper proposes a conceptually simple yet efficient training block, termed as Attentive Feature Mixup (AFM), which allows paying more attention to clean samples and less to mislabeled ones via sample interactions in small groups. Specifically, this plug-and-play AFM first leverages a group-to-attend module to construct groups and assign attention weights for group-wise samples, and then uses a mixup module with the attention weights to interpolate massive noisy-suppressed samples. The AFM has several appealing benefits for noise-robust deep learning. (i) It does not rely on any assumptions and extra clean subset. (ii) With massive interpolations, the ratio of useless samples is reduced dramatically compared to the original noisy ratio. (iii) It jointly optimizes the interpolation weights with classifiers, suppressing the influence of mislabeled data via low attention weights. (iv) It partially inherits the vicinal risk minimization of mixup to alleviate over-fitting while improves it by sampling fewer feature-target vectors around mislabeled data from the mixup vicinal distribution. Extensive experiments demonstrate that AFM yields state-of-the-art results on two challenging real-world noisy datasets: Food101N and Clothing1M.

X. Peng, K. Wang and Z. Zeng—Equally-contributed first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Unsupervised label noise modeling and loss correction (2019)

    Google Scholar 

  2. Arpit, D., et al.: A closer look at memorization in deep networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 233–242. JMLR. org (2017)

    Google Scholar 

  3. Barandela, R., Gasca, E.: Decontamination of training samples for supervised pattern recognition methods. In: Ferri, F.J., Iñesta, J.M., Amin, A., Pudil, P. (eds.) SSPR /SPR 2000. LNCS, vol. 1876, pp. 621–630. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44522-6_64

    Chapter  MATH  Google Scholar 

  4. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48. ACM (2009)

    Google Scholar 

  5. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J. Artif. Intell. Res. 11, 131–167 (1999)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. TNNLS 25(5), 845–869 (2014)

    MATH  Google Scholar 

  8. Gong, Y., Ke, Q., Isard, M., Lazebnik, S.: A multi-view embedding space for modeling internet images, tags, and their semantics. IJCV 106(2), 210–233 (2014). https://doi.org/10.1007/s11263-013-0658-4

    Article  Google Scholar 

  9. Guo, H., Mao, Y., Zhang, R.: Mixup as locally linear out-of-manifold regularization. In: AAAI, vol. 33, pp. 3714–3722 (2019)

    Google Scholar 

  10. Guo, S., et al.: CurriculumNet: weakly supervised learning from large-scale web images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 139–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_9

    Chapter  Google Scholar 

  11. Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. In: ICCV (2019)

    Google Scholar 

  12. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: regularizing very deep neural networks on corrupted labels. arXiv preprint arXiv:1712.05055 (2017)

  13. Joulin, A., van der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large weakly supervised data. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 67–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_5

    Chapter  Google Scholar 

  14. Krause, J., et al.: The unreasonable effectiveness of noisy data for fine-grained recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 301–320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_19

    Chapter  Google Scholar 

  15. Lee, K.H., He, X., Zhang, L., Yang, L.: CleanNet: transfer learning for scalable image classifier training with label noise. arXiv preprint arXiv:1711.07131 (2017)

  16. Lee, K.H., He, X., Zhang, L., Yang, L.: CleanNet: transfer learning for scalable image classifier training with label noise. In: CVPR, pp. 5447–5456 (2018)

    Google Scholar 

  17. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled data. In: CVPR, June 2019

    Google Scholar 

  18. Li, Q., Peng, X., Cao, L., Du, W., Xing, H., Qiao, Y.: Product image recognition with guidance learning and noisy supervision. Comput. Vis. Image Underst. 196, 102963 (2020)

    Article  Google Scholar 

  19. Li, W., Wang, L., Li, W., Agustsson, E., Van Gool, L.: Webvision database: visual learning and understanding from web data. arXiv preprint arXiv:1708.02862 (2017)

  20. Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.J.: Learning from noisy labels with distillation. In: ICCV, pp. 1928–1936 (2017)

    Google Scholar 

  21. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Mai, Z., Hu, G., Chen, D., Shen, F., Shen, H.T.: MetaMixUp: learning adaptive interpolation policy of MixUp with meta-learning. arXiv preprint arXiv:1908.10059 (2019)

  23. Manwani, N., Sastry, P.: Noise tolerance under risk minimization. IEEE Trans. Cybern. 43(3), 1146–1151 (2013)

    Article  Google Scholar 

  24. Miranda, A.L.B., Garcia, L.P.F., Carvalho, A.C.P.L.F., Lorena, A.C.: Use of classification algorithms in noise detection and elimination. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 417–424. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_50

    Chapter  Google Scholar 

  25. Misra, I., Lawrence Zitnick, C., Mitchell, M., Girshick, R.: Seeing through the human reporting bias: visual classifiers from noisy human-centric labels. In: CVPR, pp. 2930–2939 (2016)

    Google Scholar 

  26. Patrini, G., Rozza, A., Menon, A.K., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: CVPR, pp. 2233–2241 (2017)

    Google Scholar 

  27. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596 (2014)

  28. Rolnick, D., Veit, A., Belongie, S., Shavit, N.: Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694 (2017)

  29. Schmidt, R.A., Bjork, R.A.: New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychol. Sci. 3(4), 207–218 (1992)

    Article  Google Scholar 

  30. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

  31. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. arXiv preprint arXiv:1803.11364 (2018)

  32. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.J.: Learning from noisy large-scale datasets with minimal supervision, In: CVPR. pp. 6575–6583 (2017)

    Google Scholar 

  33. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states, pp. 6438–6447 (2019)

    Google Scholar 

  34. Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition. In: CVPR, June 2020

    Google Scholar 

  35. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: CVPR, pp. 2691–2699 (2015)

    Google Scholar 

  36. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  37. Zhang, W., Wang, Y., Qiao, Y.: MetaCleaner: learning to hallucinate clean representations for noisy-labeled visual recognition. In: CVPR, pp. 7373–7382 (2019)

    Google Scholar 

  38. Zhuang, B., Liu, L., Li, Y., Shen, C., Reid, I.: Attend in groups: a weakly-supervised deep learning framework for learning from web data. In: CVPR, pp. 1878–1887 (2017)

    Google Scholar 

Download references

Acknowledge

This work is partially supported by National Key Research and Development Program of China (No. 2020YFC2004800), National Natural Science Foundation of China (U1813218, U1713208), Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-QYZX-092), Guangdong Special Support Program (2016TX03X276), and Shenzhen Basic Research Program (JSGG20180507182100698, CXB201104220032A), Shenzhen Institute of Artificial Intelligence and Robotics for Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, X., Wang, K., Zeng, Z., Li, Q., Yang, J., Qiao, Y. (2020). Suppressing Mislabeled Data via Grouping and Self-attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12361. Springer, Cham. https://doi.org/10.1007/978-3-030-58517-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58517-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58516-7

  • Online ISBN: 978-3-030-58517-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics