Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unselfie: Translating Selfies to Neutral-Pose Portraits in the Wild

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12362))

Included in the following conference series:

Abstract

Due to the ubiquity of smartphones, it is popular to take photos of one’s self, or “selfies.” Such photos are convenient to take, because they do not require specialized equipment or a third-party photographer. However, in selfies, constraints such as human arm length often make the body pose look unnatural. To address this issue, we introduce unselfie, a novel photographic transformation that automatically translates a selfie into a neutral-pose portrait. To achieve this, we first collect an unpaired dataset, and introduce a way to synthesize paired training data for self-supervised learning. Then, to unselfie a photo, we propose a new three-stage pipeline, where we first find a target neutral pose, inpaint the body texture, and finally refine and composite the person on the background. To obtain a suitable target neutral pose, we propose a novel nearest pose search module that makes the reposing task easier and enables the generation of multiple neutral-pose results among which users can choose the best one they like. Qualitative and quantitative evaluations show the superiority of our pipeline over alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More results and implementation details are reported in the supplementary materials.

References

  1. Alp Güler, R., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: CVPR (2018)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. In: ICLR (2017)

    Google Scholar 

  3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (TOG) 28(3), 24 (2009)

    Article  Google Scholar 

  4. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: ICLR (2018)

    Google Scholar 

  5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  6. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. In: arXiv preprint arXiv:1812.08008 (2018)

  7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)

    Google Scholar 

  8. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph. (TOG) 31(4), 82:1–82:10 (2012)

    Article  Google Scholar 

  9. Dong, H., Liang, X., Gong, K., Lai, H., Zhu, J., Yin, J.: Soft-gated warping-gan for pose-guided person image synthesis. In: NeurIPS (2018)

    Google Scholar 

  10. Esser, P., Sutter, E., Ommer, B.: A variational U-net for conditional appearance and shape generation. In: CVPR (2018)

    Google Scholar 

  11. Ge, Y., Zhang, R., Wu, L., Wang, X., Tang, X., Luo, P.: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images (2019)

    Google Scholar 

  12. Good, P.: Permutation tests: a practical guide to resampling methods for testing hypotheses. Springer Science & Business Media (2000)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  14. Grigorev, A., Sevastopolsky, A., Vakhitov, A., Lempitsky, V.: Coordinate-based texture inpainting for pose-guided image generation. In: CVPR (2019)

    Google Scholar 

  15. Han, X., Hu, X., Huang, W., Scott, M.R.: Clothflow: A flow-based model for clothed person generation. In: ICCV (2019)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS (2017)

    Google Scholar 

  18. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Image completion using planar structure guidance. ACM Trans. Graph. (TOG) 33(4), 129 (2014)

    Google Scholar 

  19. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  20. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  23. Lassner, C., Pons-Moll, G., Gehler, P.V.: A generative model of people in clothing. In: ICCV (2017)

    Google Scholar 

  24. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3

    Chapter  Google Scholar 

  25. Liang, X., et al.: Deep human parsing with active template regression. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 37(12), 2402–2414 (2015)

    Article  Google Scholar 

  26. Liang, X., Zhang, H., Lin, L., Xing, E.: Generative semantic manipulation with mask-contrasting GAN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 574–590. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_34

    Chapter  Google Scholar 

  27. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  28. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)

    Google Scholar 

  29. Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping gan: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: ICCV (2019)

    Google Scholar 

  30. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)

    Google Scholar 

  31. Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T., Van Gool, L.: Exemplar guided unsupervised image-to-image translation with semantic consistency. In: ICLR (2019)

    Google Scholar 

  32. Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., Fritz, M.: Disentangled person image generation. In: CVPR (2018)

    Google Scholar 

  33. Ma, L., Xu, J., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: NIPS (2017)

    Google Scholar 

  34. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  35. Mejjati, Y.A., Richardt, C., Tompkin, J., Cosker, D., Kim, K.I.: Unsupervised attention-guided image-to-image translation. In: NeurIPS (2018)

    Google Scholar 

  36. Men, Y., Mao, Y., Jiang, Y., Ma, W.Y., Lian, Z.: Controllable person image synthesis with attribute-decomposed GAN. In: CVPR (2020)

    Google Scholar 

  37. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  38. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. (CVIU) 104(2), 90–126 (2006)

    Article  Google Scholar 

  39. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: structure guided image inpainting using edge prediction. In: ICCV Workshops (2019)

    Google Scholar 

  40. Neverova, N., Alp Güler, R., Kokkinos, I.: Dense pose transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 128–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_8

    Chapter  Google Scholar 

  41. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  42. Pumarola, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: Unsupervised person image synthesis in arbitrary poses. In: CVPR (2018)

    Google Scholar 

  43. Qi, X., Chen, Q., Jia, J., Koltun, V.: Semi-parametric image synthesis. In: CVPR (2018)

    Google Scholar 

  44. Qian, S., et al.: Make a face: towards arbitrary high fidelity face manipulation. In: ICCV (2019)

    Google Scholar 

  45. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  46. Raj, A., Sangkloy, P., Chang, H., Hays, J., Ceylan, D., Lu, J.: SwapNet: image based garment transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 679–695. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_41

    Chapter  Google Scholar 

  47. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: NIPS (2016)

    Google Scholar 

  48. Reed, S.E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)

    Google Scholar 

  49. Ren, Y., Yu, X., Chen, J., Li, T.H., Li, G.: Deep image spatial transformation for person image generation. In: CVPR (2020)

    Google Scholar 

  50. Siarohin, A., Sangineto, E., Lathuilière, S., Sebe, N.: Deformable gans for pose-based human image generation. In: CVPR (2018)

    Google Scholar 

  51. Song, S., Zhang, W., Liu, J., Mei, T.: Unsupervised person image generation with semantic parsing transformation. In: CVPR (2019)

    Google Scholar 

  52. Weng, S., Li, W., Li, D., Jin, H., Shi, B.: Misc: Multi-condition injection and spatially-adaptive compositing for conditional person image synthesis. In: CVPR (2020)

    Google Scholar 

  53. Wu, W., Cao, K., Li, C., Qian, C., Loy, C.C.: Transgaga: Geometry-aware unsupervised image-to-image translation. In: CVPR (2019)

    Google Scholar 

  54. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: CVPR (2017)

    Google Scholar 

  55. Xu, Z., Sun, J.: Image inpainting by patch propagation using patch sparsity. IEEE Trans. Image Process. (TIP) 19(5), 1153–1165 (2010)

    Article  MathSciNet  Google Scholar 

  56. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-net: image inpainting via deep feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_1

    Chapter  Google Scholar 

  57. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR (2018)

    Google Scholar 

  58. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV (2019)

    Google Scholar 

  59. Zeng, Y., Lin, Z., Yang, J., Zhang, J., Shechtman, E., Lu, H.: High-resolution image inpainting with iterative confidence feedback and guided upsampling. In: ECCV (2020)

    Google Scholar 

  60. Zhang, H., et al.: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  61. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  62. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  63. Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention transfer for person image generation. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by Adobe Research. We thank He Zhang for helping mask estimation. Selfie photo owners: #139639837-Baikal360, #224341474-Drobot Dean, #153081973-MaximBeykov, #67229337-Oleg Shelomentsev, #194139222-Syda Productions, #212727509-Photocatcher, #168103021-sosiukin, #162277318-rh2010, #225137362-BublikHaus, #120915150-wollertz, #133457041-ilovemayorova, #109067715-Tupungato, #121680430-Mego-studio, #206713499-Paolese – stock.adobe.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqian Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7783 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, L., Lin, Z., Barnes, C., Efros, A.A., Lu, J. (2020). Unselfie: Translating Selfies to Neutral-Pose Portraits in the Wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12362. Springer, Cham. https://doi.org/10.1007/978-3-030-58520-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58520-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58519-8

  • Online ISBN: 978-3-030-58520-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics