Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Attentive Normalization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12362))

Included in the following conference series:

  • 3206 Accesses

Abstract

In state-of-the-art deep neural networks, both feature normalization and feature attention have become ubiquitous. They are usually studied as separate modules, however. In this paper, we propose a light-weight integration between the two schema and present Attentive Normalization (AN). Instead of learning a single affine transformation, AN learns a mixture of affine transformations and utilizes their weighted-sum as the final affine transformation applied to re-calibrate features in an instance-specific way. The weights are learned by leveraging channel-wise feature attention. In experiments, we test the proposed AN using four representative neural architectures in the ImageNet-1000 classification benchmark and the MS-COCO 2017 object detection and instance segmentation benchmark. AN obtains consistent performance improvement for different neural architectures in both benchmarks with absolute increase of top-1 accuracy in ImageNet-1000 between 0.5% and 2.7%, and absolute increase up to 1.8% and 2.2% for bounding box and mask AP in MS-COCO respectively. We observe that the proposed AN provides a strong alternative to the widely used Squeeze-and-Excitation (SE) module. The source codes are publicly available at the ImageNet Classification Repo and the MS-COCO Detection and Segmentation Repo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We tried the variant of learning \(\varGamma ()\) and \(\mathbb {B}()\) from the standardized features and observed it works worse, so we ignore it in our experiments.

  2. 2.

    In implementation, we use the reverse \(\frac{\mu _c}{\sigma _c + \epsilon }\) for numeric stability, which is equivalent to the original formulation when combing with the fc layer.

References

  1. Ba, L.J., Kiros, R., Hinton, G.E.: Layer normalization. CoRR abs/1607.06450 (2016). http://arxiv.org/abs/1607.06450

  2. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 6154–6162 (2018). https://doi.org/10.1109/CVPR.2018.00644, http://openaccess.thecvf.com/content_cvpr_2018/html/Cai_Cascade_R-CNN_Delving_CVPR_2018_paper.html

  4. Chen, K., et al.: MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  5. Deecke, L., Murray, I., Bilen, H.: Mode normalization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019). https://openreview.net/forum?id=HyN-M2Rctm

  6. Dumoulin, V., et al.: Adversarially learned inference. CoRR abs/1606.00704 (2016). http://arxiv.org/abs/1606.00704

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. CoRR abs/1812.01187 (2018). http://arxiv.org/abs/1812.01187

  12. Howard, A., et al.: Searching for mobilenetv3. CoRR abs/1905.02244 (2019). http://arxiv.org/abs/1905.02244

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR abs/1709.01507 (2017). http://arxiv.org/abs/1709.01507

  14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  15. Huang, L., Liu, X., Lang, B., Yu, A.W., Wang, Y., Li, B.: Orthogonal weight normalization: solution to optimization over multiple dependent stiefel manifolds in deep neural networks. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), The 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 3271–3278 (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17072

  16. Huang, L., Yang, D., Lang, B., Deng, J.: Decorrelated batch normalization. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 791–800 (2018)

    Google Scholar 

  17. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: Criss-cross attention for semantic segmentation. CoRR abs/1811.11721 (2018). http://arxiv.org/abs/1811.11721

  18. Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-normalized models. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 1945–1953 (2017)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Blei, D., Bach, F. (eds.) Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 448–456. JMLR Workshop and Conference Proceedings (2015). http://jmlr.org/proceedings/papers/v37/ioffe15.pdf

  20. Jia, S., Chen, D., Chen, H.: Instance-level meta normalization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 4865–4873 (2019), http://openaccess.thecvf.com/content_CVPR_2019/html/Jia_Instance-Level_Meta_Normalization_CVPR_2019_paper.html

  21. Kalayeh, M.M., Shah, M.: Training faster by separating modes of variation in batch-normalized models. IEEE Trans. Pattern Anal. Mach. Intell. 42, 1–1 (2019). https://doi.org/10.1109/TPAMI.2019.2895781

    Article  Google Scholar 

  22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv preprint arXiv:1812.04948 (2018)

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems (NIPS), pp. 1106–1114 (2012)

    Google Scholar 

  24. Li, X., Song, X., Wu, T.: Aognets: compositional grammatical architectures for deep learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 6220–6230 (2019)

    Google Scholar 

  25. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  26. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312

  27. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with restarts. CoRR abs/1608.03983 (2016). http://arxiv.org/abs/1608.03983

  28. Luo, P., Ren, J., Peng, Z.: Differentiable learning-to-normalize via switchable normalization. CoRR abs/1806.10779 (2018). http://arxiv.org/abs/1806.10779

  29. Miyato, T., Koyama, M.: CGANS with projection discriminator. arXiv preprint arXiv:1802.05637 (2018)

  30. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep representation learning. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 1863–1871. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00195

  31. Park, T., Liu, M., Wang, T., Zhu, J.: Semantic image synthesis with spatially-adaptive normalization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 2337–2346 (2019)

    Google Scholar 

  32. Peng, C., et al.: Megdet: a large mini-batch object detector. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 6181–6189 (2018)

    Google Scholar 

  33. Perez, E., de Vries, H., Strub, F., Dumoulin, V., Courville, A.C.: Learning visual reasoning without strong priors. CoRR abs/1707.03017 (2017). http://arxiv.org/abs/1707.03017

  34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  35. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  36. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016, p. 901 (2016)

    Google Scholar 

  37. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  38. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 2488–2498 (2018), http://papers.nips.cc/paper/7515-how-does-batch-normalization-help-optimization

  39. Shao, W., et al.: SSN: learning sparse switchable normalization via sparsestmax. CoRR abs/1903.03793 (2019). http://arxiv.org/abs/1903.03793

  40. Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. In: International Conference on Computer Vision, ICCV (2019)

    Google Scholar 

  41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015). http://arxiv.org/abs/1512.00567

  42. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: The missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022

  43. de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 6597–6607 (2017). http://papers.nips.cc/paper/7237-modulating-early-visual-processing-by-language

  44. Wang, F., et al.: Residual attention network for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 6450–6458 (2017). https://doi.org/10.1109/CVPR.2017.683

  45. Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 7794–7803 (2018). https://doi.org/10.1109/CVPR.2018.00813, http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.html

  46. Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. In: Computer Vision - ECCV 2018–15th European Conference, Proceedings, Part VII, Munich, Germany, 8–14 September 2018, pp. 3–19 (2018). https://doi.org/10.1007/978-3-030-01234-2_1

  47. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  48. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings (2018). https://openreview.net/forum?id=r1Ddp1-Rb

Download references

Acknowledgement

This work is supported in part by NSF IIS-1909644, ARO Grant W911NF1810295, NSF IIS-1822477 and NSF IUSE-2013451. The views presented in this paper are those of the authors and should not be interpreted as representing any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfu Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 4972 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Sun, W., Wu, T. (2020). Attentive Normalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12362. Springer, Cham. https://doi.org/10.1007/978-3-030-58520-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58520-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58519-8

  • Online ISBN: 978-3-030-58520-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics