Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Differentiable Automatic Data Augmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12367))

Included in the following conference series:

Abstract

Data augmentation (DA) techniques aim to increase data variability, and thus train deep networks with better generalisation. The pioneering AutoAugment automated the search for optimal DA policies with reinforcement learning. However, AutoAugment is extremely computationally expensive, limiting its wide applicability. Followup works such as Population Based Augmentation (PBA) and Fast AutoAugment improved efficiency, but their optimization speed remains a bottleneck. In this paper, we propose Differentiable Automatic Data Augmentation (DADA) which dramatically reduces the cost. DADA relaxes the discrete DA policy selection to a differentiable optimization problem via Gumbel-Softmax. In addition, we introduce an unbiased gradient estimator, RELAX, leading to an efficient and effective one-pass optimization strategy to learn an efficient and accurate DA policy. We conduct extensive experiments on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Furthermore, we demonstrate the value of Auto DA in pre-training for downstream detection problems. Results show our DADA is at least one order of magnitude faster than the state-of-the-art while achieving very comparable accuracy. The code is available at https://github.com/VDIGPKU/DADA.

Y. Li and G. Hu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Léonard, N., Courville, A.C.: Estimating or propagating gradients through stochastic neurons for conditional computation. CoRR abs/1308.3432 (2013)

    Google Scholar 

  2. Chen, K., et al.: Mmdetection: open mmlab detection toolbox and benchmark. CoRR abs/1906.07155 (2019)

    Google Scholar 

  3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: CVPR (2019)

    Google Scholar 

  4. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. CoRR abs/1708.04552 (2017)

    Google Scholar 

  5. Dong, X., Yang, Y.: Searching for a robust neural architecture in four gpu hours. In: CVPR (2019)

    Google Scholar 

  6. Gastaldi, X.: Shake-shake regularization of 3-branch residual networks. In: ICLR (2017)

    Google Scholar 

  7. Grathwohl, W., Choi, D., Wu, Y., Roeder, G., Duvenaud, D.: Backpropagation through the void: optimizing control variates for black-box gradient estimation. In: ICLR (2018)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  10. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation: efficient learning of augmentation policy schedules. In: ICML (2019)

    Google Scholar 

  11. Inoue, H.: Data augmentation by pairing samples for images classification. CoRR abs/1801.02929 (2018)

    Google Scholar 

  12. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)

    Google Scholar 

  13. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: NeurIPS (2019)

    Google Scholar 

  16. Lin, C., et al.: Online hyper-parameter learning for auto-augmentation strategy. In: ICCV (2019)

    Google Scholar 

  17. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  18. Lin, T., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  19. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2019)

    Google Scholar 

  20. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: ICLR (2017)

    Google Scholar 

  21. Mohamed, S., Rosca, M., Figurnov, M., Mnih, A.: Monte carlo gradient estimation in machine learning. CoRR abs/1906.10652 (2019)

    Google Scholar 

  22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  26. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In: ICLR (2019)

    Google Scholar 

  27. Yamada, Y., Iwamura, M., Akiba, T., Kise, K.: Shakedrop regularization for deep residual learning. IEEE Access 7, 186126–186136 (2019)

    Article  Google Scholar 

  28. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  29. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  30. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China under Grant 61673029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongtao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Hu, G., Wang, Y., Hospedales, T., Robertson, N.M., Yang, Y. (2020). Differentiable Automatic Data Augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58542-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58541-9

  • Online ISBN: 978-3-030-58542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics