Abstract
We present a new point-based approach for modeling the appearance of real scenes. The approach uses a raw point cloud as the geometric representation of a scene, and augments each point with a learnable neural descriptor that encodes local geometry and appearance. A deep rendering network is learned in parallel with the descriptors, so that new views of the scene can be obtained by passing the rasterizations of a point cloud from new viewpoints through this network. The input rasterizations use the learned descriptors as point pseudo-colors. We show that the proposed approach can be used for modeling complex scenes and obtaining their photorealistic views, while avoiding explicit surface estimation and meshing. In particular, compelling results are obtained for scenes scanned using hand-held commodity RGB-D sensors as well as standard RGB cameras even in the presence of objects that are challenging for standard mesh-based modeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Blinn, J.F., Newell, M.E.: Texture and reflection in computer generated images. Commun. ACM 19(10), 542–547 (1976)
Blinn, J.F.: Simulation of wrinkled surfaces. In: Proceedings of the SIGGRAPH, vol. 12, pp. 286–292. ACM (1978)
Debevec, P., Yu, Y., Borshukov, G.: Efficient view-dependent image-based rendering with projective texture-mapping. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 105–116. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_10
Wood, D.N., et al.: Surface light fields for 3D photography. In: Proceedings of the SIGGRAPH, pp. 287–296 (2000)
McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: SIGGRAPH, pp. 39–46. ACM (1995)
Seitz, S.M., Dyer, C.R.: View morphing. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 21–30. ACM (1996)
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: SIGGRAPH, pp. 43–54. ACM (1996)
Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)
Levoy, M., Whitted, T.: The use of points as a display primitive. Citeseer (1985)
Grossman, J.P., Dally, W.J.: Point sample rendering. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 181–192. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_17
Gross, M., Pfister, H., Alexa, M., Pauly, M., Stamminger, M., Zwicker, M.: Point based computer graphics. In: Eurographics Association (2002)
Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Comput. Graph. 28(6), 801–814 (2004)
Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the CVPR, pp. 5967–5976 (2017)
Nalbach, O., Arabadzhiyska, E., Mehta, D., Seidel, H., Ritschel, T.: Deep shading: convolutional neural networks for screen space shading. Comput. Graph. Forum 36(4), 65–78 (2017)
Chen, A., et al.: Deep surface light fields. Proc. ACM Comput. Graph. Interact. Tech. 1(1), 14 (2018)
Bui, G., Le, T., Morago, B., Duan, Y.: Point-based rendering enhancement via deep learning. Vis. Comput. 34(6), 829–841 (2018). https://doi.org/10.1007/s00371-018-1550-6
Hedman, P., Philip, J., Price, T., Frahm, J., Drettakis, G., Brostow, G.J.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. 37(6), 257:1–257:15 (2018)
Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. ACM Press/Addison-Wesley Publishing Co. (2000)
Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the SIGGRAPH, pp. 371–378. ACM (2001)
Meshry, M., et al.: Neural rerendering in the wild. In: Proceedings of the CVPR, June 2019
Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions. In: Proceedings of the CVPR, June 2019
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: learning to predict new views from the world’s imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5515–5524 (2016)
Ganin, Y., Kononenko, D., Sungatullina, D., Lempitsky, V.: DeepWarp: photorealistic image resynthesis for gaze manipulation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 311–326. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_20
Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18
Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M.: IGNOR: image-guided neural object rendering. arXiv 2018 (2018)
Martin-Brualla, R., et al.: LookinGood: enhancing performance capture with real-time neural re-rendering. In: SIGGRAPH Asia 2018 Technical Papers, p. 255. ACM (2018)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: Proceedings of the CVPR (2019)
Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. In: Proceedings of the SIGGRAPH (2019)
Zhou, Q., Koltun, V.: Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans. Graph. 33(4), 155:1–155:10 (2014)
Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-based texture mapping. ACM Trans. Graph. 36(4), 106:1–106:11 (2017)
Huang, J., et al.: Adversarial texture optimization from RGB-D scans. In: Proceedings of the CVPR, pp. 1559–1568 (2020)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. arXiv preprint arXiv:1806.03589 (2018)
Williams, L.: Pyramidal parametrics. In: Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, pp. 1–11 (1983)
Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Proceedings of the NIPS, pp. 658–666 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the CVPR (2017)
Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. 36(3), 24:1–24:18 (2017)
Gong, K., Gao, Y., Liang, X., Shen, X., Wang, M., Lin, L.: Graphonomy: universal human parsing via graph transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7450–7459 (2019)
Agisoft: Metashape software. Accessed 20 May 2019
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Aliev, KA., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V. (2020). Neural Point-Based Graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-58542-6_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58541-9
Online ISBN: 978-3-030-58542-6
eBook Packages: Computer ScienceComputer Science (R0)