Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Neural Point-Based Graphics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12367))

Included in the following conference series:

Abstract

We present a new point-based approach for modeling the appearance of real scenes. The approach uses a raw point cloud as the geometric representation of a scene, and augments each point with a learnable neural descriptor that encodes local geometry and appearance. A deep rendering network is learned in parallel with the descriptors, so that new views of the scene can be obtained by passing the rasterizations of a point cloud from new viewpoints through this network. The input rasterizations use the learned descriptors as point pseudo-colors. We show that the proposed approach can be used for modeling complex scenes and obtaining their photorealistic views, while avoiding explicit surface estimation and meshing. In particular, compelling results are obtained for scenes scanned using hand-held commodity RGB-D sensors as well as standard RGB cameras even in the presence of objects that are challenging for standard mesh-based modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://structure.io/.

References

  1. Blinn, J.F., Newell, M.E.: Texture and reflection in computer generated images. Commun. ACM 19(10), 542–547 (1976)

    Article  Google Scholar 

  2. Blinn, J.F.: Simulation of wrinkled surfaces. In: Proceedings of the SIGGRAPH, vol. 12, pp. 286–292. ACM (1978)

    Google Scholar 

  3. Debevec, P., Yu, Y., Borshukov, G.: Efficient view-dependent image-based rendering with projective texture-mapping. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 105–116. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_10

    Chapter  Google Scholar 

  4. Wood, D.N., et al.: Surface light fields for 3D photography. In: Proceedings of the SIGGRAPH, pp. 287–296 (2000)

    Google Scholar 

  5. McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: SIGGRAPH, pp. 39–46. ACM (1995)

    Google Scholar 

  6. Seitz, S.M., Dyer, C.R.: View morphing. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 21–30. ACM (1996)

    Google Scholar 

  7. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: SIGGRAPH, pp. 43–54. ACM (1996)

    Google Scholar 

  8. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)

    Google Scholar 

  9. Levoy, M., Whitted, T.: The use of points as a display primitive. Citeseer (1985)

    Google Scholar 

  10. Grossman, J.P., Dally, W.J.: Point sample rendering. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 181–192. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_17

    Chapter  Google Scholar 

  11. Gross, M., Pfister, H., Alexa, M., Pauly, M., Stamminger, M., Zwicker, M.: Point based computer graphics. In: Eurographics Association (2002)

    Google Scholar 

  12. Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Comput. Graph. 28(6), 801–814 (2004)

    Article  Google Scholar 

  13. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the CVPR, pp. 5967–5976 (2017)

    Google Scholar 

  14. Nalbach, O., Arabadzhiyska, E., Mehta, D., Seidel, H., Ritschel, T.: Deep shading: convolutional neural networks for screen space shading. Comput. Graph. Forum 36(4), 65–78 (2017)

    Article  Google Scholar 

  15. Chen, A., et al.: Deep surface light fields. Proc. ACM Comput. Graph. Interact. Tech. 1(1), 14 (2018)

    MathSciNet  Google Scholar 

  16. Bui, G., Le, T., Morago, B., Duan, Y.: Point-based rendering enhancement via deep learning. Vis. Comput. 34(6), 829–841 (2018). https://doi.org/10.1007/s00371-018-1550-6

    Article  Google Scholar 

  17. Hedman, P., Philip, J., Price, T., Frahm, J., Drettakis, G., Brostow, G.J.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. 37(6), 257:1–257:15 (2018)

    Google Scholar 

  18. Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  19. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the SIGGRAPH, pp. 371–378. ACM (2001)

    Google Scholar 

  20. Meshry, M., et al.: Neural rerendering in the wild. In: Proceedings of the CVPR, June 2019

    Google Scholar 

  21. Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions. In: Proceedings of the CVPR, June 2019

    Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  23. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: learning to predict new views from the world’s imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5515–5524 (2016)

    Google Scholar 

  24. Ganin, Y., Kononenko, D., Sungatullina, D., Lempitsky, V.: DeepWarp: photorealistic image resynthesis for gaze manipulation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 311–326. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_20

    Chapter  Google Scholar 

  25. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  26. Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M.: IGNOR: image-guided neural object rendering. arXiv 2018 (2018)

    Google Scholar 

  27. Martin-Brualla, R., et al.: LookinGood: enhancing performance capture with real-time neural re-rendering. In: SIGGRAPH Asia 2018 Technical Papers, p. 255. ACM (2018)

    Google Scholar 

  28. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: Proceedings of the CVPR (2019)

    Google Scholar 

  29. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. In: Proceedings of the SIGGRAPH (2019)

    Google Scholar 

  30. Zhou, Q., Koltun, V.: Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans. Graph. 33(4), 155:1–155:10 (2014)

    Google Scholar 

  31. Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-based texture mapping. ACM Trans. Graph. 36(4), 106:1–106:11 (2017)

    Article  Google Scholar 

  32. Huang, J., et al.: Adversarial texture optimization from RGB-D scans. In: Proceedings of the CVPR, pp. 1559–1568 (2020)

    Google Scholar 

  33. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. arXiv preprint arXiv:1806.03589 (2018)

  36. Williams, L.: Pyramidal parametrics. In: Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, pp. 1–11 (1983)

    Google Scholar 

  37. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Proceedings of the NIPS, pp. 658–666 (2016)

    Google Scholar 

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  39. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  40. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the CVPR (2017)

    Google Scholar 

  41. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. 36(3), 24:1–24:18 (2017)

    Article  Google Scholar 

  42. Gong, K., Gao, Y., Liang, X., Shen, X., Wang, M., Lin, L.: Graphonomy: universal human parsing via graph transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7450–7459 (2019)

    Google Scholar 

  43. Agisoft: Metashape software. Accessed 20 May 2019

    Google Scholar 

  44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  45. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Sevastopolsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliev, KA., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V. (2020). Neural Point-Based Graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58542-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58541-9

  • Online ISBN: 978-3-030-58542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics