Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stochastic Bundle Adjustment for Efficient and Scalable 3D Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number. When the problem is scaled up, this step is neither efficient in computation nor manageable for a single compute node. In this work, we propose a stochastic bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM iterations to improve the efficiency and scalability. It first reformulates the quadratic programming problem of an LM iteration based on the clustering of the visibility graph by introducing the equality constraints across clusters. Then, we propose to relax it into a chance constrained problem and solve it through sampled convex program. The relaxation is intended to eliminate the interdependence between clusters embodied by the constraints, so that a large RCS can be decomposed into independent linear sub-problems. Numerical experiments on unordered Internet image sets and sequential SLAM image sets, as well as distributed experiments on large-scale datasets, have demonstrated the high efficiency and scalability of the proposed approach. Codes are released at https://github.com/zlthinker/STBA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since one of the image sets Union Square has only 10 reconstructed images, we replace it with another public image set ArtsQuad.

References

  1. Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org

  2. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_3

    Chapter  Google Scholar 

  3. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bertsekas, D.P.: Parallel and Distributed Computation: Numerical Methods, vol. 3 (1989)

    Google Scholar 

  5. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  7. Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005)

    Article  MathSciNet  Google Scholar 

  8. Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theor. Appl. 148(2), 257–280 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chatterjee, A., Madhav Govindu, V.: Efficient and robust large-scale rotation averaging. In: ICCV (2013)

    Google Scholar 

  10. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol. 49. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  Google Scholar 

  11. Darmaillac, Y., Loustau, S.: MCMC Louvain for online community detection. arXiv preprint arXiv:1612.01489 (2016)

  12. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm. TOMS 30(3), 377–380 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dellaert, F., Carlson, J., Ila, V., Ni, K., Thorpe, C.E.: Subgraph-preconditioned conjugate gradients for large scale SLAM. In: IROS (2010)

    Google Scholar 

  14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  15. Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules

    Google Scholar 

  16. Eriksson, A., Bastian, J., Chin, T.J., Isaksson, M.: A consensus-based framework for distributed bundle adjustment. In: CVPR (2016)

    Google Scholar 

  17. Fang, M., Pollok, T., Qu, C.: Merge-SfM: merging partial reconstructions. In: BMVC (2019)

    Google Scholar 

  18. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  19. Hestenes, M.R., et al.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stan. 49(6), 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  20. Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.S.: Pushing the envelope of modern methods for bundle adjustment. PAMI 34(8), 1605–1617 (2011)

    Article  Google Scholar 

  21. Jian, Y.-D., Balcan, D.C., Dellaert, F.: Generalized subgraph preconditioners for large-scale bundle adjustment. In: Dellaert, F., Frahm, J.-M., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds.) Outdoor and Large-Scale Real-World Scene Analysis. LNCS, vol. 7474, pp. 131–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34091-8_6

    Chapter  Google Scholar 

  22. Konolige, K., Garage, W.: Sparse sparse bundle adjustment. In: BMVC (2010)

    Google Scholar 

  23. Kushal, A., Agarwal, S.: Visibility based preconditioning for bundle adjustment. In: CVPR (2012)

    Google Scholar 

  24. Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng. 32(1–2), 25–45 (2008)

    Article  Google Scholar 

  25. Lourakis, M.I., Argyros, A.A.: SBA: a software package for generic sparse bundle adjustment. TOMS 36(1), 2 (2009)

    Article  MathSciNet  Google Scholar 

  26. Lourakis, M., Argyros, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: ICCV (2005)

    Google Scholar 

  27. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  28. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  29. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D reconstruction. In: ICCV (2007)

    Google Scholar 

  30. Rotkin, V., Toledo, S.: The design and implementation of a new out-of-core sparse Cholesky factorization method. TOMS 30(1), 19–46 (2004)

    Article  MathSciNet  Google Scholar 

  31. Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  Google Scholar 

  32. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  33. Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_5

    Chapter  Google Scholar 

  34. Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: CVPR (2011)

    Google Scholar 

  35. Zach, C.: Robust bundle adjustment revisited. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 772–787. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_50

    Chapter  Google Scholar 

  36. Zhang, R., Zhu, S., Fang, T., Quan, L.: Distributed very large scale bundle adjustment by global camera consensus. In: ICCV (2017)

    Google Scholar 

  37. Zhu, S., et al.: Parallel structure from motion from local increment to global averaging. arXiv preprint arXiv:1702.08601 (2017)

  38. Zhu, S., et al.: Very large-scale global SfM by distributed motion averaging. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Hong Kong RGC GRF16206819 & 16203518 and T22-603/15N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1899 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L. et al. (2020). Stochastic Bundle Adjustment for Efficient and Scalable 3D Reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics