Abstract
Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number. When the problem is scaled up, this step is neither efficient in computation nor manageable for a single compute node. In this work, we propose a stochastic bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM iterations to improve the efficiency and scalability. It first reformulates the quadratic programming problem of an LM iteration based on the clustering of the visibility graph by introducing the equality constraints across clusters. Then, we propose to relax it into a chance constrained problem and solve it through sampled convex program. The relaxation is intended to eliminate the interdependence between clusters embodied by the constraints, so that a large RCS can be decomposed into independent linear sub-problems. Numerical experiments on unordered Internet image sets and sequential SLAM image sets, as well as distributed experiments on large-scale datasets, have demonstrated the high efficiency and scalability of the proposed approach. Codes are released at https://github.com/zlthinker/STBA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Since one of the image sets Union Square has only 10 reconstructed images, we replace it with another public image set ArtsQuad.
References
Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org
Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_3
Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)
Bertsekas, D.P.: Parallel and Distributed Computation: Numerical Methods, vol. 3 (1989)
Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (2014)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)
Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005)
Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theor. Appl. 148(2), 257–280 (2011)
Chatterjee, A., Madhav Govindu, V.: Efficient and robust large-scale rotation averaging. In: ICCV (2013)
Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol. 49. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10
Darmaillac, Y., Loustau, S.: MCMC Louvain for online community detection. arXiv preprint arXiv:1612.01489 (2016)
Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm. TOMS 30(3), 377–380 (2004)
Dellaert, F., Carlson, J., Ila, V., Ni, K., Thorpe, C.E.: Subgraph-preconditioned conjugate gradients for large scale SLAM. In: IROS (2010)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules
Eriksson, A., Bastian, J., Chin, T.J., Isaksson, M.: A consensus-based framework for distributed bundle adjustment. In: CVPR (2016)
Fang, M., Pollok, T., Qu, C.: Merge-SfM: merging partial reconstructions. In: BMVC (2019)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)
Hestenes, M.R., et al.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stan. 49(6), 409–436 (1952)
Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.S.: Pushing the envelope of modern methods for bundle adjustment. PAMI 34(8), 1605–1617 (2011)
Jian, Y.-D., Balcan, D.C., Dellaert, F.: Generalized subgraph preconditioners for large-scale bundle adjustment. In: Dellaert, F., Frahm, J.-M., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds.) Outdoor and Large-Scale Real-World Scene Analysis. LNCS, vol. 7474, pp. 131–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34091-8_6
Konolige, K., Garage, W.: Sparse sparse bundle adjustment. In: BMVC (2010)
Kushal, A., Agarwal, S.: Visibility based preconditioning for bundle adjustment. In: CVPR (2012)
Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng. 32(1–2), 25–45 (2008)
Lourakis, M.I., Argyros, A.A.: SBA: a software package for generic sparse bundle adjustment. TOMS 36(1), 2 (2009)
Lourakis, M., Argyros, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: ICCV (2005)
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)
Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D reconstruction. In: ICCV (2007)
Rotkin, V., Toledo, S.: The design and implementation of a new out-of-core sparse Cholesky factorization method. TOMS 30(1), 19–46 (2004)
Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_5
Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: CVPR (2011)
Zach, C.: Robust bundle adjustment revisited. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 772–787. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_50
Zhang, R., Zhu, S., Fang, T., Quan, L.: Distributed very large scale bundle adjustment by global camera consensus. In: ICCV (2017)
Zhu, S., et al.: Parallel structure from motion from local increment to global averaging. arXiv preprint arXiv:1702.08601 (2017)
Zhu, S., et al.: Very large-scale global SfM by distributed motion averaging. In: CVPR (2018)
Acknowledgement
This work is supported by Hong Kong RGC GRF16206819 & 16203518 and T22-603/15N.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, L. et al. (2020). Stochastic Bundle Adjustment for Efficient and Scalable 3D Reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-58555-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58554-9
Online ISBN: 978-3-030-58555-6
eBook Packages: Computer ScienceComputer Science (R0)