Abstract
We present the first spatial-spectral joint consistency network for self-supervised dense correspondence mapping between non-isometric shapes. The task of alignment in non-Euclidean domains is one of the most fundamental and crucial problems in computer vision. As 3D scanners can generate highly complex and dense models, the mission of finding dense mappings between those models is vital. The novelty of our solution is based on a cyclic mapping between metric spaces, where the distance between a pair of points should remain invariant after the full cycle. As the same learnable rules that generate the point-wise descriptors apply in both directions, the network learns invariant structures without any labels while coping with non-isometric deformations. We show here state-of-the-art-results by a large margin for a variety of tasks compared to known self-supervised and supervised methods .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An illustration of the distortion process is shown in Fig. 2.
References
Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015). Software available from http://tensorflow.org/
Aflalo, Y., Bronstein, A., Kimmel, R.: On convex relaxation of graph isomorphism. Proc. Natl. Acad. Sci. 112(10), 2942–2947 (2015)
Aflalo, Y., Dubrovina, A., Kimmel, R.: Spectral generalized multi-dimensional scaling. Int. J. Comput. Vision 118(3), 380–392 (2016)
Aflalo, Y., Kimmel, R., Raviv, D.: Scale invariant geometry for nonrigid shapes. SIAM J. Imaging Sci. 6(3), 1579–1597 (2013)
Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)
Ben-Chen, M., Gotsman, C., Bunin, G.: Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27, 449–458 (2008). Wiley Online Library
Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Piscataway, June 2014
Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M., Cremers, D.: Anisotropic diffusion descriptors. Comput. Graph. Forum 35, 431–441 (2016)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. 103(5), 1168–1172 (2006)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008)
Bronstein, M.M., Bronstein, A.M., Kimmel, R., Yavneh, I.: Multigrid multidimensional scaling. Numer. Linear Algebra Appl. 13(2–3), 149–171 (2006)
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)
Chen, Q., Koltun, V.: Robust nonrigid registration by convex optimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2039–2047 (2015)
Cosmo, L., Rodolà, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: SHREC’16: Partial matching of deformable shapes
Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)
Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM Press/Addison-Wesley Publishing Co. (1997)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3D-CODED : 3D Correspondences by Deep Deformation. CoRR abs/1806.05228 (2018), http://arxiv.org/abs/1806.05228
Halimi, O., Litany, O., Rodola, E., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4370–4379 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
Huang, Q.X., Guibas, L.: Consistent shape maps via semidefinite programming. Comput. Graph. Forum 32, 177–186 (2013). Wiley Online Library
Huang, Q., Wang, F., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph. (TOG) 33(4), 1–11 (2014)
Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graphics (TOG) 30, 79 (2011). ACM
Li, C.L., Simon, T., Saragih, J., Póczos, B., Sheikh, Y.: LBS Autoencoder: self-supervised fitting of articulated meshes to point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11967–11976 (2019)
Lipman, Y., Daubechies, I.: Conformal Wasserstein distances: comparing surfaces in polynomial time. Adv. Math. 227(3), 1047–1077 (2011)
Litany, O., Remez, T., Rodolà, E., Bronstein, A.M., Bronstein, M.M.: Deep functional maps: structured prediction for dense shape correspondence. CoRR abs/1704.08686 (2017). http://arxiv.org/abs/1704.08686
Litany, O., Rodolà, E., Bronstein, A.M., Bronstein, M.M.: Fully spectral partial shape matching. Comput. Graph. Forum 36, 247–258 (2017). Wiley Online Library
Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2013)
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)
Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37–45 (2015)
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)
Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geometr. Des. 26(1), 37–60 (2009)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Waisman, D., Sochen, N., Kimmel, R.: Equi-affine invariant geometry for shape analysis. J. Math. Imaging Vis. 50(1–2), 144–163 (2014)
Raviv, D., Bronstein, M.M., Bronstein, A.M., Kimmel, R., Sochen, N.: Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In: CVPR 2011, pp. 2361–2367. IEEE (2011)
Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 604–615. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_51
Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical framework for shape correspondence. Numer. Math. Theory Methods Appl. 6(1), 245–261 (2013)
Raviv, D., Kimmel, R.: Affine invariant geometry for non-rigid shapes. Int. J. Comput. Vision 111(1), 1–11 (2015)
Raviv, D., Raskar, R.: Scale invariant metrics of volumetric datasets. SIAM J. Imaging Sci. 8(1), 403–425 (2015)
Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36, 222–236 (2017). Wiley Online Library
Rodolà, E., Rota Bulo, S., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape correspondence using random forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4177–4184 (2014)
Roufosse, J.M., Sharma, A., Ovsjanikov, M.: Unsupervised deep learning for structured shape matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1617–1627 (2019)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP 2007, pp. 225–233. Eurographics Association, Aire-la-Ville (2007). http://dl.acm.org/citation.cfm?id=1281991.1282022
Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)
Starck, J., Hilton, A.: Spherical matching for temporal correspondence of non-rigid surfaces. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), Volume 1, vol. 2, pp. 1387–1394. IEEE (2005)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009). Wiley Online Library
Szeliski, R., et al.: SCAPE: shape completion and animation of people, vol. 24 (2005)
Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.P.: Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum 30, 543–552 (2011). Wiley Online Library
Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26
Vestner, M., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526. IEEE (2017)
Vestner, M., Litman, R., Rodolà, E., Bronstein, A., Cremers, D.: Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3327–3336 (2017)
Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2849–2857 (2017)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 373–380. IEEE (2009)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgment
D.R. is partially funded by the Zimin Institute for Engineering Solutions Advancing BetterLives, the Israeli consortiums for soft robotics and autonomous driving, and the Shlomo Shmeltzer Institute for Smart Transportation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ginzburg, D., Raviv, D. (2020). Cyclic Functional Mapping: Self-supervised Correspondence Between Non-isometric Deformable Shapes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-58558-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58557-0
Online ISBN: 978-3-030-58558-7
eBook Packages: Computer ScienceComputer Science (R0)