Abstract
Single-stage instance segmentation approaches have recently gained popularity due to their speed and simplicity, but are still lagging behind in accuracy, compared to two-stage methods. We propose a fast single-stage instance segmentation method, called SipMask, that preserves instance-specific spatial information by separating mask prediction of an instance to different sub-regions of a detected bounding-box. Our main contribution is a novel light-weight spatial preservation (SP) module that generates a separate set of spatial coefficients for each sub-region within a bounding-box, leading to improved mask predictions. It also enables accurate delineation of spatially adjacent instances. Further, we introduce a mask alignment weighting loss and a feature alignment scheme to better correlate mask prediction with object detection. On COCO test-dev, our SipMask outperforms the existing single-stage methods. Compared to the state-of-the-art single-stage TensorMask, SipMask obtains an absolute gain of 1.0% (mask AP), while providing a four-fold speedup. In terms of real-time capabilities, SipMask outperforms YOLACT with an absolute gain of 3.0% (mask AP) under similar settings, while operating at comparable speed on a Titan Xp. We also evaluate our SipMask for real-time video instance segmentation, achieving promising results on YouTube-VIS dataset. The source code is available at https://github.com/JialeCao001/SipMask.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnab, A., Torr, P.H.: Pixelwise instance segmentation with a dynamically instantiated network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact++: better real-time instance segmentation. arXiv:1912.06218 (2020)
Cao, J., Cholakkal, H., Anwer, R.M., Khan, F.S., Pang, Y., Shao, L.: D2det: towards high quality object detection and instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Cao, J., Pang, Y., Han, J., Li, X.: Hierarchical shot detector. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Cao, J., Pang, Y., Li, X.: Triply supervised decoder networks for joint detection and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., Yan, Y.: Blendmask: top-down meets bottom-up for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: Masklab: instance segmentation by refining object detection with semantic and direction features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, X., Girshick, R., He, K., Dollár, P.: Tensormask: a foundation for dense object segmentation. In: Proceedings of the IEEE International Conference Computer Vision (2019)
Cholakkal, H., Sun, G., Khan, F.S., Shao, L.: Object counting and instance segmentation with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32
Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Proceedings of the Advances in Neural Information Processing Systems (2016)
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: boosting instance segmentation via probability map guided copy-pasting. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Fu, C.Y., Shvets, M., Berg, A.C.: Retinamask: learning to predict masks improves state-of-the-art single-shot detection for free. arXiv:1901.03353 (2019)
Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision (2016)
Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Jiang, X., et al.: Density-aware multi-task learning for crowd counting. IEEE Trans. Multimedia (2020)
Khan, F.S., Xu, J., van de Weijer, J., Bagdanov, A., Anwer, R.M., Lopez, A.: Recognizing actions through action-specific person detection. IEEE Trans. Image Process. 24(11), 4422–4432 (2015)
Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., Rother, C.: Instancecut: from edges to instances with multicut. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Pang, Y., Li, Y., Shen, J., Shao, L.: Towards bridging semantic gap to improve semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Pang, Y., Xie, J., Khan, M.H., Anwer, R.M., Khan, F.S., Shao, L.: Mask-guided attention network for occluded pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (2015)
Sun, G., Wang, B., Dai, J., Gool, L.V.: Mining cross-image semantics for weakly supervised semantic segmentation. In: ECCV 2020. Springer, Cham (2020)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: Feelvos: fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Wang, S., Gong, Y., Xing, J., Huang, L., Huang, C., Hu, W.: RDSNet: a new deep architecture for reciprocal object detection and instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)
Wang, T., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: Learning rich features at high-speed for single-shot object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Wang, T., Yang, T., Danelljan, M., Khan, F.S., Zhang, X., Sun, J.: Learning human-object interaction detection using interaction points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Wu, J., Zhou, C., Yang, M., Zhang, Q., Li, Y., Yuan, J.: Temporal-context enhanced detection of heavily occluded pedestrians. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Xie, E., et al.: Polarmask: single shot instance segmentation with polar representation. arXiv:1909.13226 (2019)
Xu, W., Wang, H., Qi, F., Lu, C.: Explicit shape encoding for real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Yang, Z., et al.: Reppoints: point set representation for object detection. In: ECCV 2020. Springer, Cham (2020)
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. arXiv:2001.04193 (2020)
Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Author information
Authors and Affiliations
Contributions
Jiale Cao, Rao Muhammad Anwer
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L. (2020). SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-58568-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58567-9
Online ISBN: 978-3-030-58568-6
eBook Packages: Computer ScienceComputer Science (R0)