Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

  • 5315 Accesses

Abstract

Single-stage instance segmentation approaches have recently gained popularity due to their speed and simplicity, but are still lagging behind in accuracy, compared to two-stage methods. We propose a fast single-stage instance segmentation method, called SipMask, that preserves instance-specific spatial information by separating mask prediction of an instance to different sub-regions of a detected bounding-box. Our main contribution is a novel light-weight spatial preservation (SP) module that generates a separate set of spatial coefficients for each sub-region within a bounding-box, leading to improved mask predictions. It also enables accurate delineation of spatially adjacent instances. Further, we introduce a mask alignment weighting loss and a feature alignment scheme to better correlate mask prediction with object detection. On COCO test-dev, our SipMask outperforms the existing single-stage methods. Compared to the state-of-the-art single-stage TensorMask, SipMask obtains an absolute gain of 1.0% (mask AP), while providing a four-fold speedup. In terms of real-time capabilities, SipMask outperforms YOLACT with an absolute gain of 3.0% (mask AP) under similar settings, while operating at comparable speed on a Titan Xp. We also evaluate our SipMask for real-time video instance segmentation, achieving promising results on YouTube-VIS dataset. The source code is available at https://github.com/JialeCao001/SipMask.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Torr, P.H.: Pixelwise instance segmentation with a dynamically instantiated network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  2. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  3. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact++: better real-time instance segmentation. arXiv:1912.06218 (2020)

  4. Cao, J., Cholakkal, H., Anwer, R.M., Khan, F.S., Pang, Y., Shao, L.: D2det: towards high quality object detection and instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  5. Cao, J., Pang, Y., Han, J., Li, X.: Hierarchical shot detector. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  6. Cao, J., Pang, Y., Li, X.: Triply supervised decoder networks for joint detection and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  7. Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., Yan, Y.: Blendmask: top-down meets bottom-up for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  8. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  9. Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: Masklab: instance segmentation by refining object detection with semantic and direction features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  11. Chen, X., Girshick, R., He, K., Dollár, P.: Tensormask: a foundation for dense object segmentation. In: Proceedings of the IEEE International Conference Computer Vision (2019)

    Google Scholar 

  12. Cholakkal, H., Sun, G., Khan, F.S., Shao, L.: Object counting and instance segmentation with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  13. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  14. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  15. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Proceedings of the Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  16. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  17. Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: boosting instance segmentation via probability map guided copy-pasting. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  18. Fu, C.Y., Shvets, M., Berg, A.C.: Retinamask: learning to predict masks improves state-of-the-art single-shot detection for free. arXiv:1901.03353 (2019)

  19. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  20. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision (2016)

    Google Scholar 

  23. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  24. Jiang, X., et al.: Density-aware multi-task learning for crowd counting. IEEE Trans. Multimedia (2020)

    Google Scholar 

  25. Khan, F.S., Xu, J., van de Weijer, J., Bagdanov, A., Anwer, R.M., Lopez, A.: Recognizing actions through action-specific person detection. IEEE Trans. Image Process. 24(11), 4422–4432 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., Rother, C.: Instancecut: from edges to instances with multicut. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  27. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  28. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  29. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  30. Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  31. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  33. Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  34. Pang, Y., Li, Y., Shen, J., Shao, L.: Towards bridging semantic gap to improve semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  35. Pang, Y., Xie, J., Khan, M.H., Anwer, R.M., Khan, F.S., Shao, L.: Mask-guided attention network for occluded pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  36. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  37. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5

    Chapter  Google Scholar 

  38. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (2015)

    Google Scholar 

  39. Sun, G., Wang, B., Dai, J., Gool, L.V.: Mining cross-image semantics for weakly supervised semantic segmentation. In: ECCV 2020. Springer, Cham (2020)

    Google Scholar 

  40. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  41. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: Feelvos: fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  42. Wang, S., Gong, Y., Xing, J., Huang, L., Huang, C., Hu, W.: RDSNet: a new deep architecture for reciprocal object detection and instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  43. Wang, T., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: Learning rich features at high-speed for single-shot object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  44. Wang, T., Yang, T., Danelljan, M., Khan, F.S., Zhang, X., Sun, J.: Learning human-object interaction detection using interaction points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  45. Wu, J., Zhou, C., Yang, M., Zhang, Q., Li, Y., Yuan, J.: Temporal-context enhanced detection of heavily occluded pedestrians. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  46. Xie, E., et al.: Polarmask: single shot instance segmentation with polar representation. arXiv:1909.13226 (2019)

  47. Xu, W., Wang, H., Qi, F., Lu, C.: Explicit shape encoding for real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  48. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  49. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  50. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  51. Yang, Z., et al.: Reppoints: point set representation for object detection. In: ECCV 2020. Springer, Cham (2020)

    Google Scholar 

  52. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. arXiv:2001.04193 (2020)

  53. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  54. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  55. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jiale Cao, Rao Muhammad Anwer

Corresponding author

Correspondence to Yanwei Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L. (2020). SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics