Abstract
Human-object interaction (HOI) detection aims to detect and recognise how people interact with the objects that surround them. This is challenging as different interaction categories are often distinguished only by very subtle visual differences in the scene. In this paper we introduce two methods to amplify key cues in the image, and also a method to combine these and other cues when considering the interaction between a human and an object. First, we introduce an encoding mechanism for representing the fine-grained spatial layout of the human and object (a subtle cue) and also semantic context (a cue, represented by text embeddings of surrounding objects). Second, we use plausible future movements of humans and objects as a cue to constrain the space of possible interactions. Third, we use a gate and memory architecture as a fusion module to combine the cues. We demonstrate that these three improvements lead to a performance which exceeds prior HOI methods across standard benchmarks by a considerable margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Empirically, we observe the feature ordering to GRU is not sensitive to the HOI detection performance. So we use this order in all experiments.
References
Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008)
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)
Chao, Y.W., Wang, Z., He, Y., Wang, J., Deng, J.: HICO: a benchmark for recognizing human-object interactions in images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1017–1025 (2015)
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3076–3086 (2017)
Fang, H.-S., Cao, J., Tai, Y.-W., Lu, C.: Pairwise body-part attention for recognizing human-object interactions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 52–68. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_4
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Fouhey, D.F., Zitnick, C.L.: Predicting object dynamics in scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2019–2026 (2014)
Gao, C., Zou, Y., Huang, J.B.: iCAN: instance-centric attention network for human-object interaction detection. In: British Machine Vision Conference (2018)
Gao, R., Xiong, B., Grauman, K.: Im2Flow: motion hallucination from static images for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5937–5947 (2018)
Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018). https://github.com/facebookresearch/detectron
Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8359–8367 (2018)
Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)
Gupta, T., Schwing, A., Hoiem, D.: No-frills human-object interaction detection: factorization, appearance and layout encodings, and training techniques. arXiv preprint arXiv:1811.05967 (2018)
Hayes, B., Shah, J.A.: Interpretable models for fast activity recognition and anomaly explanation during collaborative robotics tasks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 6586–6593. IEEE (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2011–2023 (2019)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Kolesnikov, A., Kuznetsova, A., Lampert, C., Ferrari, V.: Detecting visual relationships using box attention. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Krishna, R., Chami, I., Bernstein, M., Fei-Fei, L.: Referring relationships. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6867–6876 (2018)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)
Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982 (2018)
Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.: Scene graph generation from objects, phrases and region captions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1261–1270 (2017)
Li, Y.L., et al.: Transferable interactiveness knowledge for human-object interaction detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3585–3594 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51
Luo, Y., Zheng, Z., Zheng, L., Guan, T., Yu, J., Yang, Y.: Macro-micro adversarial network for human parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 424–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_26
Mallya, A., Lazebnik, S.: Learning models for actions and person-object interactions with transfer to question answering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 414–428. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_25
Murphy, K.P., Torralba, A., Freeman, W.T.: Using the forest to see the trees: a graphical model relating features, objects, and scenes. In: Advances in Neural Information Processing Systems, pp. 1499–1506 (2004)
Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting rare visual relations using analogies. arXiv preprint arXiv:1812.05736 (2018)
Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.-C.: Learning human-object interactions by graph parsing neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 407–423. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_25
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Shen, L., Yeung, S., Hoffman, J., Mori, G., Fei-Fei, L.: Scaling human-object interaction recognition through zero-shot learning. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1568–1576. IEEE (2018)
Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition (2003)
Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033 (2017)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances In Neural Information Processing Systems, pp. 613–621 (2016)
Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2443–2451 (2015)
Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware multi-level feature network for human object interaction detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9469–9478 (2019)
Wang, T., et al.: Deep contextual attention for human-object interaction detection. arXiv preprint arXiv:1910.07721 (2019)
Xu, B., Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Interact as you intend: intention-driven human-object interaction detection. IEEE Trans. Multimed. 22, 1423–1432 (2019)
Xu, B., Wong, Y., Li, J., Zhao, Q., Kankanhalli, M.S.: Learning to detect human-object interactions with knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)
Zhang, H., Kyaw, Z., Chang, S.F., Chua, T.S.: Visual translation embedding network for visual relation detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5532–5540 (2017)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Zhou, P., Chi, M.: Relation parsing neural network for human-object interaction detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Zhuang, B., Liu, L., Shen, C., Reid, I.: Towards context-aware interaction recognition for visual relationship detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 589–598 (2017)
Acknowledgements
The authors gratefully acknowledge the support of the EPSRC Programme Grant Seebibyte EP/M013774/1 and EPSRC Programme Grant CALOPUS EP/R013853/1. The authors would also like to thank Samuel Albanie and Sophia Koepke for helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Chen, Q., Zisserman, A. (2020). Amplifying Key Cues for Human-Object-Interaction Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-58568-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58567-9
Online ISBN: 978-3-030-58568-6
eBook Packages: Computer ScienceComputer Science (R0)