Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

3D Human Shape Reconstruction from a Polarization Image

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

  • 4976 Accesses

Abstract

This paper tackles the problem of estimating 3D body shape of clothed humans from single polarized 2D images, i.e. polarization images. Polarization images are known to be able to capture polarized reflected lights that preserve rich geometric cues of an object, which has motivated its recent applications in reconstructing surface normal of the objects of interest. Inspired by the recent advances in human shape estimation from single color images, in this paper, we attempt at estimating human body shapes by leveraging the geometric cues from single polarization images. A dedicated two-stage deep learning approach, SfP, is proposed: given a polarization image, stage one aims at inferring the fined-detailed body surface normal; stage two gears to reconstruct the 3D body shape of clothing details. Empirical evaluations on a synthetic dataset (SURREAL) as well as a real-world dataset (PHSPD) demonstrate the qualitative and quantitative performance of our approach in estimating human poses and shapes. This indicates polarization camera is a promising alternative to the more conventional color or depth imaging for human shape estimation. Further, normal maps inferred from polarization imaging play a significant role in accurately recovering the body shapes of clothed people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, an polarization image has four channels with each channel corresponding to a specific polarizer degree of (0, 45, 90 and 135).

  2. 2.

    Our project website is https://jimmyzou.github.io/publication/2020-polarization-clothed-human-shape.

References

  1. Park, S., Hwang, J., Kwak, N.: 3D human pose estimation using convolutional neural networks with 2D pose information. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 156–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_15

    Chapter  Google Scholar 

  2. Li, S., Zhang, W., Chan, A.B.: Maximum-margin structured learning with deep networks for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2848–2856 (2015)

    Google Scholar 

  3. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3D human pose with deep neural networks. In: British Machine Vision Conference (BMVC) (2016)

    Google Scholar 

  4. Tome, D., Russell, C., Agapito, L.: Lifting from the deep: convolutional 3D pose estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2500–2509 (2017)

    Google Scholar 

  5. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  6. Zhao, R., Wang, Y., Martinez, A.M.: A simple, fast and highly-accurate algorithm to recover 3D shape from 2D landmarks on a single image. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 3059–3066 (2017)

    Article  Google Scholar 

  7. Moreno-Noguer, F.: 3D human pose estimation from a single image via distance matrix regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2823–2832 (2017)

    Google Scholar 

  8. Nie, B.X., Wei, P., Zhu, S.C.: Monocular 3D human pose estimation by predicting depth on joints. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3467–3475. IEEE (2017)

    Google Scholar 

  9. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 398–407 (2017)

    Google Scholar 

  10. Wang, M., Chen, X., Liu, W., Qian, C., Lin, L., Ma, L.: DRPose3D: depth ranking in 3D human pose estimation. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 978–984 (2018)

    Google Scholar 

  11. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5255–5264 (2018)

    Google Scholar 

  12. Fang, H.S., Xu, Y., Wang, W., Liu, X., Zhu, S.C.: Learning pose grammar to encode human body configuration for 3D pose estimation. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 6821–6828 (2018)

    Google Scholar 

  13. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7307–7316 (2018)

    Google Scholar 

  14. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  15. Liu, J., et al.: Feature boosting network for 3D pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 494–501 (2020)

    Article  Google Scholar 

  16. Sharma, S., Varigonda, P.T., Bindal, P., Sharma, A., Jain, A., Bangalore, S.B.: Monocular 3D human pose estimation by generation and ordinal ranking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2325–2334 (2019)

    Google Scholar 

  17. Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C.: In the wild human pose estimation using explicit 2D features and intermediate 3D representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10905–10914 (2019)

    Google Scholar 

  18. Wandt, B., Rosenhahn, B.: RepNet: weakly supervised training of an adversarial reprojection network for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7782–7791 (2019)

    Google Scholar 

  19. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9887–9895 (2019)

    Google Scholar 

  20. Wang, K., Lin, L., Jiang, C., Qian, C., Wei, P.: 3D human pose machines with self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 42, 1069–1082 (2019)

    Google Scholar 

  21. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. (TOG) 24, 408–416 (2005)

    Article  Google Scholar 

  22. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 248 (2015)

    Article  Google Scholar 

  23. Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape and pose from images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  24. Dibra, E., Jain, H., Oztireli, C., Ziegler, R., Gross, M.: Human shape from silhouettes using generative HKS descriptors and cross-modal neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4826–4836 (2017)

    Google Scholar 

  25. Dibra, E., Jain, H., Öztireli, C., Ziegler, R., Gross, M.: HS-Nets: estimating human body shape from silhouettes with convolutional neural networks. In: Fourth International Conference on 3D Vision (3DV), pp. 108–117. IEEE (2016)

    Google Scholar 

  26. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  27. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6050–6059 (2017)

    Google Scholar 

  28. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  29. Varol, G., et al.: Learning from synthetic humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–117 (2017)

    Google Scholar 

  30. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 459–468 (2018)

    Google Scholar 

  31. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model based human pose and shape estimation. In: International Conference on 3D Vision (3DV), pp. 484–494. IEEE (2018)

    Google Scholar 

  32. Xu, Y., Zhu, S.C., Tung, T.: DenseRaC: joint 3D pose and shape estimation by dense render-and-compare. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7760–7770 (2019)

    Google Scholar 

  33. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  34. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3D pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2148–2157 (2018)

    Google Scholar 

  35. Sun, Y., Ye, Y., Liu, W., Gao, W., Fu, Y., Mei, T.: Human mesh recovery from monocular images via a skeleton-disentangled representation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5349–5358 (2019)

    Google Scholar 

  36. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)

    Google Scholar 

  37. Arnab, A., Doersch, C., Zisserman, A.: Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3404 (2019)

    Google Scholar 

  38. Varol, G., et al.: BodyNet: volumetric inference of 3D human body shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 20–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_2

    Chapter  Google Scholar 

  39. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7739–7749 (2019)

    Google Scholar 

  40. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  41. Tang, S., Tan, F., Cheng, K., Li, Z., Zhu, S., Tan, P.: A neural network for detailed human depth estimation from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7750–7759 (2019)

    Google Scholar 

  42. Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a single image by hierarchical mesh deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4491–4500 (2019)

    Google Scholar 

  43. Yang, L., Tan, F., Li, A., Cui, Z., Furukawa, Y., Tan, P.: Polarimetric dense monocular SLAM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3857–3866 (2018)

    Google Scholar 

  44. Ba, Y., Chen, R., Wang, Y., Yan, L., Shi, B., Kadambi, A.: Physics-based neural networks for shape from polarization. arXiv preprint arXiv:1903.10210 (2019)

  45. Wehner, R., Müller, M.: The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc. Natl. Acad. Sci. 103(33), 12575–12579 (2006)

    Article  Google Scholar 

  46. Daly, I.M., et al.: Dynamic polarization vision in mantis shrimps. Nat. Commun. 7, 12140 (2016)

    Article  Google Scholar 

  47. Atkinson, G.A., Hancock, E.R.: Recovery of surface orientation from diffuse polarization. IEEE Trans. Image Process. 15(6), 1653–1664 (2006)

    Article  Google Scholar 

  48. Kadambi, A., Taamazyan, V., Shi, B., Raskar, R.: Depth sensing using geometrically constrained polarization normals. Int. J. Comput. Vis. 125(1–3), 34–51 (2017). https://doi.org/10.1007/s11263-017-1025-7

    Article  MathSciNet  Google Scholar 

  49. Chen, L., Zheng, Y., Subpa-asa, A., Sato, I.: Polarimetric three-view geometry. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_2

    Chapter  Google Scholar 

  50. Cui, Z., Gu, J., Shi, B., Tan, P., Kautz, J.: Polarimetric multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1558–1567 (2017)

    Google Scholar 

  51. Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Sparseness meets deepness: 3D human pose estimation from monocular video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4966–4975 (2016)

    Google Scholar 

  52. Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1455 (2015)

    Google Scholar 

  53. Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2361–2368 (2014)

    Google Scholar 

  54. Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41

    Chapter  Google Scholar 

  55. Zhou, X., Zhu, M., Pavlakos, G., Leonardos, S., Derpanis, K.G., Daniilidis, K.: MonoCap: monocular human motion capture using a CNN coupled with a geometric prior. IEEE Trans. Pattern Anal. Machine Intell. 41(4), 901–914 (2019)

    Article  Google Scholar 

  56. Zhou, X., Zhu, M., Leonardos, S., Daniilidis, K.: Sparse representation for 3D shape estimation: a convex relaxation approach. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1648–1661 (2016)

    Article  Google Scholar 

  57. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7035–7043 (2017)

    Google Scholar 

  58. Ci, H., Wang, C., Ma, X., Wang, Y.: Optimizing network structure for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2262–2271 (2019)

    Google Scholar 

  59. Cai, Y., et al.: Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2272–2281 (2019)

    Google Scholar 

  60. Jiang, H., Cai, J., Zheng, J.: Skeleton-aware 3D human shape reconstruction from point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5431–5441 (2019)

    Google Scholar 

  61. Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3D geometry. ACM Trans. Graph. (TOG) 24(3), 536–543 (2005)

    Article  Google Scholar 

  62. Zou, S., et al.: Polarization human shape and pose dataset. arXiv preprint arXiv:2004.14899 (2020)

  63. Cao, Z., Martinez, G.H., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  64. Zuo, X., et al.: SparseFusion: dynamic human avatar modeling from sparse RGBD images. IEEE Trans. Multimed. (2020)

    Google Scholar 

  65. Smith, W.A.P., Ramamoorthi, R., Tozza, S.: Linear depth estimation from an uncalibrated, monocular polarisation image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 109–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_7

    Chapter  Google Scholar 

  66. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the NSERC Discovery Grants, and the University of Alberta-Huawei Joint Innovation Collaboration grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihao Zou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 33654 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, S. et al. (2020). 3D Human Shape Reconstruction from a Polarization Image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics