Abstract
To get clear street-view and photo-realistic simulation in autonomous driving, we present an automatic video inpainting algorithm that can remove traffic agents from videos and synthesize missing regions with the guidance of depth/point cloud. By building a dense 3D map from stitched point clouds, frames within a video are geometrically correlated via this common 3D map. In order to fill a target inpainting area in a frame, it is straightforward to transform pixels from other frames into the current one with correct occlusion. Furthermore, we are able to fuse multiple videos through 3D point cloud registration, making it possible to inpaint a target video with multiple source videos. The motivation is to solve the long-time occlusion problem where an occluded area has never been visible in the entire video. To our knowledge, we are the first to fuse multiple videos for video inpainting. To verify the effectiveness of our approach, we build a large inpainting dataset in the real urban road environment with synchronized images and Lidar data including many challenge scenes, e.g., long time occlusion. The experimental results show that the proposed approach outperforms the state-of-the-art approaches for all the criteria, especially the RMSE (Root Mean Squared Error) has been reduced by about \(\mathbf{13} \%\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. Trans. Img. Proc. 10(8), 1200–1211 (2001). https://doi.org/10.1109/83.935036
Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. Trans. Img. Proc. 12(8), 882–889 (2003). https://doi.org/10.1109/TIP.2003.815261
Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–119 (2018)
Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph. (TOG) (Proc. SIGGRAPH 2012), 31(4), 82:1–82:10 (2012)
Ebdelli, M., Le Meur, O., Guillemot, C.: Video inpainting with short-term windows: application to object removal and error concealment. IEEE Trans. Image Process. 24, 3034–3047 (2015). https://doi.org/10.1109/TIP.2015.2437193
Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346. SIGGRAPH 2001, ACM, New York, NY, USA (2001). https://doi.org/10.1145/383259.383296, http://doi.acm.org/10.1145/383259.383296
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Temporally coherent completion of dynamic video. ACM Trans. Graph. (TOG) 35(6), 196 (2016)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (Proc. SIGGRAPH 2017) 36(4), 107:1–107:14 (2017)
Izadi, S., et al.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568. UIST 2011, ACM, New York, NY, USA (2011). DOIurlhttp://doi.org/10.1145/2047196.2047270, http://doi.acm.org/10.1145/2047196.2047270
Li, W., et al.: Aads: augmented autonomous driving simulation using data-driven algorithms. Sci. Robot. 4(28) (2019). https://doi.org/10.1126/scirobotics.aaw0863, https://robotics.sciencemag.org/content/4/28/eaaw0863
Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6120–6127 (2019). https://arxiv.org/pdf/1811.02146.pdf
Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Towards fast, generic video inpainting. In: Proceedings of the 10th European Conference on Visual Media Production, pp. 7:1–7:8. CVMP 2013, ACM, New York, NY, USA (2013). https://doi.org/10.1145/2534008.2534019, http://doi.acm.org/10.1145/2534008.2534019
Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Video inpainting of complex scenes. SIAM J. Imaging Sci. 7, 1993–2019 (2014). https://doi.org/10.1137/140954933
Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: Feature learning by inpainting. In: Computer Vision and Pattern Recognition (CVPR) (2016)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH 2003 Papers, pp. 313–318. SIGGRAPH 2003, ACM, New York, NY, USA (2003). https://doi.org/10.1145/1201775.882269, http://doi.acm.org/10.1145/1201775.882269
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Ren, J.S., Xu, L., Yan, Q., Sun, W.: Shepard convolutional neural networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 901–909. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5774-shepard-convolutional-neural-networks.pdf
Shih, T.K., Tang, N.C., Hwang, J.N.: Exemplar-based video inpainting without ghost shadow artifacts by maintaining temporal continuity. IEEE Trans. Cir. and Sys. for Video Technol. 19(3), 347–360 (2009). https://doi.org/10.1109/TCSVT.2009.2013519, http://dx.doi.org/10.1109/TCSVT.2009.2013519
Simakov, D., Caspi, Y., Shechtman, E., Irani, M.: Summarizing visual data using bidirectional similarity. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
Steinbrücker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 719–722, November 2011. https://doi.org/10.1109/ICCVW.2011.6130321
Wang, C., Huang, H., Han, X., Wang, J.: Video inpainting by jointly learning temporal structure and spatial details. In: Proceedings of the 33th AAAI Conference on Artificial Intelligence (2019)
Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint arXiv:1801.07892 (2018)
Zhang, J., Singh, S.: Loam: lidar odometry and mapping in real-time. In: Robotics: Science and Systems Conference, July 2014
Zhang, R., et al.: Autoremover: automatic object removal for autonomous driving videos. arXiv preprint arXiv:1911.12588 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Liao, M., Lu, F., Zhou, D., Zhang, S., Li, W., Yang, R. (2020). DVI: Depth Guided Video Inpainting for Autonomous Driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-58589-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58588-4
Online ISBN: 978-3-030-58589-1
eBook Packages: Computer ScienceComputer Science (R0)