Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Decoupled Learning Scheme for Real-World Burst Denoising from Raw Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12370))

Included in the following conference series:

  • 4344 Accesses

Abstract

The recently developed burst denoising approach, which reduces noise by using multiple frames captured in a short time, has demonstrated much better denoising performance than its single-frame counterparts. However, existing learning based burst denoising methods are limited by two factors. On one hand, most of the models are trained on video sequences with synthetic noise. When applied to real-world raw image sequences, visual artifacts often appear due to the different noise statistics. On the other hand, there lacks a real-world burst denoising benchmark of dynamic scenes because the generation of clean ground-truth is very difficult due to the presence of object motions. In this paper, a novel multi-frame CNN model is carefully designed, which decouples the learning of motion from the learning of noise statistics. Consequently, an alternating learning algorithm is developed to learn how to align adjacent frames from a synthetic noisy video dataset, and learn to adapt to the raw noise statistics from real-world noisy datasets of static scenes. Finally, the trained model can be applied to real-world dynamic sequences for burst denoising. Extensive experiments on both synthetic video datasets and real-world dynamic sequences demonstrate the leading burst denoising performance of our proposed method.

L. Zhang—This work is supported by the Hong Kong RGC RIF grant (R5001-18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006). https://doi.org/10.1109/TSP.2006.881199

    Article  MATH  Google Scholar 

  3. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  4. Bayer, B.E.: Color imaging array. US Patent 3,971,065, 20 July 1976

    Google Scholar 

  5. Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  6. Buades, A., Lisani, J., Miladinović, M.: Patch-based video denoising with optical flow estimation. IEEE Trans. Image Process. 25(6), 2573–2586 (2016). https://doi.org/10.1109/TIP.2016.2551639

    Article  MathSciNet  MATH  Google Scholar 

  7. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  8. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  9. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3291–3300, June 2018. https://doi.org/10.1109/CVPR.2018.00347

  10. Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  11. Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: Proceedings of the 15th European Signal Processing Conference, pp. 145–149, September 2007

    Google Scholar 

  12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  13. Ehret, T., Davy, A., Arias, P., Facciolo, G.: Joint demosaicking and denoising by fine-tuning of bursts of raw images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8868–8877 (2019)

    Google Scholar 

  14. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006). https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  15. Godard, C., Matzen, K., Uyttendaele, M.: Deep burst denoising. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 560–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_33

    Chapter  Google Scholar 

  16. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869, June 2014. https://doi.org/10.1109/CVPR.2014.366

  17. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  18. Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. 35(6), 192:1–192:12 (2016)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kokkinos, F., Lefkimmiatis, S.: Iterative residual CNNs for burst photography applications. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 5929–5938. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  21. Lefkimmiatis, S.: Non-local color image denoising with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5882–5891, July 2017. https://doi.org/10.1109/CVPR.2017.623

  22. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. PMLR (2018). Proceedings of Machine Learning Research, vol. 80, pp. 2971–2980

    Google Scholar 

  23. Liu, C., Freeman, W.T.: A high-quality video denoising algorithm based on reliable motion estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 706–719. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_51

    Chapter  Google Scholar 

  24. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 886–88609, June 2018. https://doi.org/10.1109/CVPRW.2018.00121

  25. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012). https://doi.org/10.1109/TIP.2012.2199324

    Article  MathSciNet  MATH  Google Scholar 

  26. Mairal, J., Bach, F.R., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, 27 September–4 October 2009, pp. 2272–2279. IEEE Computer Society (2009). https://doi.org/10.1109/ICCV.2009.5459452

  27. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2502–2510, June 2018. https://doi.org/10.1109/CVPR.2018.00265

  28. Plötz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2750–2759, July 2017. https://doi.org/10.1109/CVPR.2017.294

  29. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003). https://doi.org/10.1109/TIP.2003.818640

    Article  MathSciNet  MATH  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 860–867, June 2005. https://doi.org/10.1109/CVPR.2005.160

  32. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4549–4557, October 2017. https://doi.org/10.1109/ICCV.2017.486

  33. Wang, X., Chan, K.C., Yu, K., Dong, C., Loy, C.C.: EDVR: video restoration with enhanced deformable convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 2019

    Google Scholar 

  34. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1105–1113, October 2017. https://doi.org/10.1109/ICCV.2017.125

  35. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision (IJCV) 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  36. Yang, D., Sun, J.: BM3D-Net: a convolutional neural network for transform-domain collaborative filtering. IEEE Signal Process. Lett. 25(1), 55–59 (2018). https://doi.org/10.1109/LSP.2017.2768660

    Article  Google Scholar 

  37. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-\(L^1\) optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  38. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018). https://doi.org/10.1109/TIP.2018.2839891

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  41. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  42. Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., Sun, J.: Fast burst images denoising. ACM Trans. Graph. (TOG) 33(6), 1–9 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15277 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Guo, S., Gu, H., Zhang, H., Zhang, L. (2020). A Decoupled Learning Scheme for Real-World Burst Denoising from Raw Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics