Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning to Cluster Under Domain Shift

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12373))

Included in the following conference series:

Abstract

While unsupervised domain adaptation methods based on deep architectures have achieved remarkable success in many computer vision tasks, they rely on a strong assumption, i.e. labeled source data must be available. In this work we overcome this assumption and we address the problem of transferring knowledge from a source to a target domain when both source and target data have no annotations. Inspired by recent works on deep clustering, our approach leverages information from data gathered from multiple source domains to build a domain-agnostic clustering model which is then refined at inference time when target data become available. Specifically, at training time we propose to optimize a novel information-theoretic loss which, coupled with domain-alignment layers, ensures that our model learns to correctly discover semantic labels while discarding domain-specific features. Importantly, our architecture design ensures that at inference time the resulting source model can be effectively adapted to the target domain without having access to source data, thanks to feature alignment and self-supervision. We evaluate the proposed approach in a variety of settings (Code available at https://github.com/willi-menapace/acids-clustering-domain-shift), considering several domain adaptation benchmarks and we show that our method is able to automatically discover relevant semantic information even in presence of few target samples and yields state-of-the-art results on multiple domain adaptation benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2229–2238 (2019)

    Google Scholar 

  2. Carlucci, F.M., Porzi, L., Caputo, B., Ricci, E., Bulò, S.R.: Autodial: automatic domain alignment layers. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5077–5085 (2017)

    Google Scholar 

  3. Carlucci, F.M., Porzi, L., Caputo, B., Ricci, E., Bulò, S.R.: Just dial: domain alignment layers for unsupervised domain adaptation. In: Image Analysis and Processing - International Conference on Image Analysis and Processing (ICIAP) 2017, pp. 357–369 (2017)

    Google Scholar 

  4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  5. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: IEEE International Conference on Computer Vision (ICCV), pp. 5880–5888 (2017)

    Google Scholar 

  6. Csurka, G.: Domain Adaptation in Computer Vision Applications. ACVPR, vol. 2. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1

    Book  Google Scholar 

  7. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML), vol. 37, pp. 1180–1189 (2015)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  9. Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., Cremers, D.: Associative deep clustering: training a classification network with no labels. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 18–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_2

    Chapter  Google Scholar 

  10. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Proceedings of the 35th International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, PMLR, 10–15 July 2018, vol. 80, pp. 1989–1998. http://proceedings.mlr.press/v80/hoffman18a.html

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML), pp. 448–456 (2015)

    Google Scholar 

  12. Ji, X., Vedaldi, A., Henriques, J.F.: Invariant information clustering for unsupervised image classification and segmentation. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9864–9873 (2019)

    Google Scholar 

  13. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  14. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5542–5550 (2017)

    Google Scholar 

  15. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1446–1455 (2019)

    Google Scholar 

  16. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. In: 5th International Conference on Learning Representations (ICLR). OpenReview.net (2017). https://openreview.net/forum?id=Hk6dkJQFx

  17. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), vol. 37, pp. 97–105 (2015)

    Google Scholar 

  18. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), vol. 70, pp. 2208–2217 (2017)

    Google Scholar 

  19. Mancini, M., Karaoguz, H., Ricci, E., Jensfelt, P., Caputo, B.: Kitting in the wild through online domain adaptation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018

    Google Scholar 

  20. Mancini, M., Bulo, S.R., Caputo, B., Ricci, E.: AdaGraph: unifying predictive and continuous domain adaptation through graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6568–6577 (2019)

    Google Scholar 

  21. Mancini, M., Porzi, L., Rota Bulò, S., Caputo, B., Ricci, E.: Boosting domain adaptation by discovering latent domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3771–3780 (2018)

    Google Scholar 

  22. Morerio, P., Cavazza, J., Murino, V.: Minimal-entropy correlation alignment for unsupervised deep domain adaptation. In: International Conference on Learning Representations (ICLR) (2018). https://openreview.net/forum?id=rJWechg0Z

  23. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4500–4509, June 2018

    Google Scholar 

  24. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  25. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22, 199–210 (2011)

    Article  Google Scholar 

  26. Peng, X., Saenko, K.: Synthetic to real adaptation with generative correlation alignment networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1982–1991 (2018)

    Google Scholar 

  27. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: CVPR, pp. 1406–1415, October 2019

    Google Scholar 

  28. Roy, S., Siarohin, A., Sangineto, E., Bulo, S.R., Sebe, N., Ricci, E.: Unsupervised domain adaptation using feature-whitening and consensus loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9463–9472 (2019)

    Google Scholar 

  29. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  30. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  31. Siarohin, A., Sangineto, E., Sebe, N.: Whitening and coloring transform for GANs (2019). https://openreview.net/forum?id=S1x2Fj0qKQ

  32. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence (2020)

    Google Scholar 

  33. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  34. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4068–4076 (2015)

    Google Scholar 

  35. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2962–2971 (2017)

    Google Scholar 

  36. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  37. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5018–5027 (2017)

    Google Scholar 

  38. Wang, X., He, K., Gupta, A.: Transitive invariance for self-supervised visual representation learning, pp. 1338–1347, October 2017. https://doi.org/10.1109/ICCV.2017.149

  39. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML), ICML-2016, vol. 48, pp. 478–487 (2016)

    Google Scholar 

  40. Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: multi-source unsupervised domain adaptation with category shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3964–3973 (2018)

    Google Scholar 

  41. Zen, G., Sangineto, E., Ricci, E., Sebe, N.: Unsupervised domain adaptation for personalized facial emotion recognition. In: Proceedings of the 16th International Conference on Multimodal Interaction (2014)

    Google Scholar 

  42. Zhao, S., Fu, H., Gong, M., Tao, D.: Geometry-aware symmetric domain adaptation for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9788–9798 (2019)

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from H2020 EU project SPRING - Socially Pertinent Robots in Gerontological Healthcare. This work was carried out under the “Vision and Learning joint Laboratory” between FBK and UNITN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Menapace .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15884 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menapace, W., Lathuilière, S., Ricci, E. (2020). Learning to Cluster Under Domain Shift. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics