Abstract
We present an autoencoder-based semi-supervised approach to classify perceived human emotions from walking styles obtained from videos or motion-captured data and represented as sequences of 3D poses. Given the motion on each joint in the pose at each time step extracted from 3D pose sequences, we hierarchically pool these joint motions in a bottom-up manner in the encoder, following the kinematic chains in the human body. We also constrain the latent embeddings of the encoder to contain the space of psychologically-motivated affective features underlying the gaits. We train the decoder to reconstruct the motions per joint per time step in a top-down manner from the latent embeddings. For the annotated data, we also train a classifier to map the latent embeddings to emotion labels. Our semi-supervised approach achieves a mean average precision of 0.84 on the Emotion-Gait benchmark dataset, which contains both labeled and unlabeled gaits collected from multiple sources. We outperform current state-of-art algorithms for both emotion recognition and action recognition from 3D gaits by 7%–23% on the absolute. More importantly, we improve the average precision by 10%–50% on the absolute on classes that each makes up less than 25% of the labeled part of the Emotion-Gait benchmark dataset.
This project has been supported by ARO grant W911NF-19-1-0069.
Code and additional materials in project webpage: https://gamma.umd.edu/taew.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CMU graphics lab motion capture database (2018). http://mocap.cs.cmu.edu/
Ahsan, U., Sun, C., Essa, I.: DiscrimNet: semi-supervised action recognition from videos using generative adversarial networks. arXiv preprint arXiv:1801.07230 (2018)
Arunnehru, J., Kalaiselvi Geetha, M.: Automatic human emotion recognition in surveillance video. In: Dey, N., Santhi, V. (eds.) Intelligent Techniques in Signal Processing for Multimedia Security. SCI, vol. 660, pp. 321–342. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44790-2_15
Babu, A.R., Rajavenkatanarayanan, A., Brady, J.R., Makedon, F.: Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal. In: Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data, p. 2. ACM (2018)
Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics Animation and Control. Oxford University Press, Oxford (1993)
Barrett, L.F.: How Emotions are Made: The Secret Life of the Brain. Houghton Mifflin Harcourt, Boston (2017)
Bauer, A., et al.: The autonomous city explorer: towards natural human-robot interaction in urban environments. IJSR 1(2), 127–140 (2009)
Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1171–1179 (2015)
Bhattacharya, U., Mittal, T., Chandra, R., Randhavane, T., Bera, A., Manocha, D.: STEP: spatial temporal graph convolutional networks for emotion perception from gaits. In: AAAI, pp. 1342–1350 (2020)
Cai, H., Bai, C., Tai, Y.-W., Tang, C.-K.: Deep video generation, prediction and completion of human action sequences. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 374–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_23
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chen, Y., Hou, W., Cheng, X., Li, S.: Joint learning for emotion classification and emotion cause detection. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 646–651 (2018)
Choutas, V., Weinzaepfel, P., Revaud, J., Schmid, C.: PoTion: pose motion representation for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7024–7033 (2018)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
Crenn, A., Khan, R.A., Meyer, A., Bouakaz, S.: Body expression recognition from animated 3D skeleton. In: IC3D, pp. 1–7. IEEE (2016)
Daoudi, M., Berretti, S., Pala, P., Delevoye, Y., Del Bimbo, A.: Emotion recognition by body movement representation on the manifold of symmetric positive definite matrices. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 550–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_49
Ekman, P., Friesen, W.V.: Head and body cues in the judgment of emotion: a reformulation. Percept. Mot. Skills 24, 711–724 (1967)
Ekman, P., Friesen, W.V.: The repertoire of nonverbal behavior: categories, origins, usage, and coding. Semiotica 1(1), 49–98 (1969)
Fabian Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: EmotioNet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: CVPR (2016)
Fernández-Dols, J.M., Ruiz-Belda, M.A.: Expression of emotion versus expressions of emotions. In: Russell, J.A., Fernández-Dols, J.M., Manstead, A.S.R., Wellenkamp, J.C. (eds.) Everyday Conceptions of Emotion. ASID, vol. 81, pp. 505–522. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-015-8484-5_29
Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3(3), 29–48 (1998)
Gross, M.M., Crane, E.A., Fredrickson, B.L.: Effort-shape and kinematic assessment of bodily expression of emotion during gait. Hum. Mov. Sci. 31(1), 202–221 (2012)
Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational autoencoder for human motion synthesis. In: Proceedings of the British Machine Vision Conference (BMVC) (2017)
Harvey, F.G., Roy, J., Kanaa, D., Pal, C.: Recurrent semi-supervised classification and constrained adversarial generation with motion capture data. Image Vis. Comput. 78, 42–52 (2018)
Hoffmann, H., et al.: Mapping discrete emotions into the dimensional space: an empirical approach. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3316–3320. IEEE (2012)
Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. (TOG) 35(4), 138 (2016)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Jacob, A., Mythili, P.: Prosodic feature based speech emotion recognition at segmental and supra segmental levels. In: SPICES, pp. 1–5. IEEE (2015)
Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)
Karg, M., Kuhnlenz, K., Buss, M.: Recognition of affect based on gait patterns. Cybernetics 40(4), 1050–1061 (2010)
Khodabandeh, M., Reza Vaezi Joze, H., Zharkov, I., Pradeep, V.: DIY human action dataset generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1448–1458 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kleinsmith, A., Bianchi-Berthouze, N.: Affective body expression perception and recognition: a survey. IEEE Trans. Affect. Comput. 4(1), 15–33 (2013)
Kosti, R., Alvarez, J., Recasens, A., Lapedriza, A.: Context based emotion recognition using EMOTIC dataset. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2755–2766 (2019)
Lee, J., Kim, S., Kim, S., Park, J., Sohn, K.: Context-aware emotion recognition networks. arXiv preprint arXiv:1908.05913 (2019)
Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Ma, Y., Paterson, H.M., Pollick, F.E.: A motion capture library for the study of identity, gender, and emotion perception from biological motion. Behav. Res. Methods 38(1), 134–141 (2006)
Meeren, H.K., van Heijnsbergen, C.C., de Gelder, B.: Rapid perceptual integration of facial expression and emotional body language. Proc. NAS 102(45), 16518–16523 (2005)
Mehrabian, A.: Analysis of the big-five personality factors in terms of the pad temperament model. Aust. J. Psychol. 48(2), 86–92 (1996)
Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. The MIT Press, Cambridge (1974)
Michalak, J., Troje, N.F., Fischer, J., Vollmar, P., Heidenreich, T., Schulte, D.: Embodiment of sadness and depression—Gait patterns associated with dysphoric mood. Psychosom. Med. 71(5), 580–587 (2009)
Mittal, T., Guhan, P., Bhattacharya, U., Chandra, R., Bera, A., Manocha, D.: EmotiCon: context-aware multimodal emotion recognition using Frege’s principle. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14234–14243 (2020)
Montepare, J.M., Goldstein, S.B., Clausen, A.: The identification of emotions from gait information. J. Nonverbal Behav. 11(1), 33–42 (1987)
Narang, S., Best, A., Feng, A., Kang, S.H., Manocha, D., Shapiro, A.: Motion recognition of self and others on realistic 3D avatars. Comput. Anim. Virtual Worlds 28(3–4), e1762 (2017)
Narayanan, V., Manoghar, B.M., Dorbala, V.S., Manocha, D., Bera, A.: ProxEmo: gait-based emotion learning and multi-view proxemic fusion for socially-aware robot navigation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020. IEEE (2020)
Nisbett, R.E., Wilson, T.D.: Telling more than we can know: verbal reports on mental processes. Psychol. Rev. 84(3), 231 (1977)
Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)
Pavllo, D., Grangier, D., Auli, M.: QuaterNet: a quaternion-based recurrent model for human motion. arXiv preprint arXiv:1805.06485 (2018)
Randhavane, T., Bera, A., Kapsaskis, K., Bhattacharya, U., Gray, K., Manocha, D.: Identifying emotions from walking using affective and deep features. arXiv preprint arXiv:1906.11884 (2019)
Randhavane, T., Bera, A., Kapsaskis, K., Sheth, R., Gray, K., Manocha, D.: EVA: generating emotional behavior of virtual agents using expressive features of gait and gaze. In: ACM Symposium on Applied Perception 2019, pp. 1–10 (2019)
Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A., Manocha, D.: The Liar’s walk: detecting deception with gait and gesture. arXiv preprint arXiv:1912.06874 (2019)
Rao, K.S., Koolagudi, S.G., Vempada, R.R.: Emotion recognition from speech using global and local prosodic features. Int. J. Speech Technol. 16, 143–160 (2013)
Riggio, H.R.: Emotional expressiveness. In: Zeigler-Hill, V., Shackelford, T. (eds.) Encyclopedia of Personality and Individual Differences. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-28099-8_508-1
Rivas, J.J., Orihuela-Espina, F., Sucar, L.E., Palafox, L., Hernández-Franco, J., Bianchi-Berthouze, N.: Detecting affective states in virtual rehabilitation. In: Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare, pp. 287–292. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2015)
Roether, C.L., Omlor, L., Christensen, A., Giese, M.A.: Critical features for the perception of emotion from gait. J. Vis. 9(6), 15–15 (2009)
Schurgin, M., Nelson, J., Iida, S., Ohira, H., Chiao, J., Franconeri, S.: Eye movements during emotion recognition in faces. J. Vis. 14(13), 14–14 (2014)
Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)
Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)
Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)
Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional LSTM network for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1227–1236 (2019)
Starke, S., Zhang, H., Komura, T., Saito, J.: Neural state machine for character-scene interactions. ACM Trans. Graph. 38(6), 209 (2019)
Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1556–1560. ACM (2008)
Venture, G., Kadone, H., Zhang, T., Grèzes, J., Berthoz, A., Hicheur, H.: Recognizing emotions conveyed by human gait. IJSR 6(4), 621–632 (2014)
Wang, L., Huynh, D.Q., Koniusz, P.: A comparative review of recent kinect-based action recognition algorithms. arXiv preprint arXiv:1906.09955 (2019)
Wu, Z., Fu, Y., Jiang, Y.G., Sigal, L.: Harnessing object and scene semantics for large-scale video understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3112–3121 (2016)
Yan, A., Wang, Y., Li, Z., Qiao, Y.: PA3D: pose-action 3D machine for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7922–7931 (2019)
Yan, S., Li, Z., Xiong, Y., Yan, H., Lin, D.: Convolutional sequence generation for skeleton-based action synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4394–4402 (2019)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)
Yang, C., Wang, Z., Zhu, X., Huang, C., Shi, J., Lin, D.: Pose guided human video generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 204–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_13
Zhang, J.Y., Felsen, P., Kanazawa, A., Malik, J.: Predicting 3D human dynamics from video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7114–7123 (2019)
Zhang, S., et al.: Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks. IEEE Trans. Multimedia 20(9), 2330–2343 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bhattacharya, U. et al. (2020). Take an Emotion Walk: Perceiving Emotions from Gaits Using Hierarchical Attention Pooling and Affective Mapping. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-58607-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58606-5
Online ISBN: 978-3-030-58607-2
eBook Packages: Computer ScienceComputer Science (R0)