Abstract
Detecting anomalies in streaming data is an important issue in a variety of real-word applications as it provides some critical information, e.g., Cyber security attacks, Fraud detection or others real-time applications. Different approaches have been designed in order to detect anomalies: statistics-based, isolation-based, clustering-based. In this paper, we present a quick survey of the existing anomaly detection methods for data streams. We focus on Isolation Forest (iForest), a state-of-the-art method for anomaly detection. We provide the implementation of IForestASD, a variant of iForest for data streams.
This implementation is built on top of scikit-multiflow, an open source machine learning framework for data streams. In fact, few anomalies detection methods are provided in the well-known data streams mining frameworks such as MOA or StreamDM. Hence, we extend scikit-multiflow providing an additional tool. We performed experiments on 3 real-world data sets to evaluate predictive performance and resource consumption (memory and time) of IForestASD and compare it with a well known and state-of-the-art anomaly detection algorithm for data streams called Half-Space Trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C.: Outlier Analysis, 2nd edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases-Volume 29, pp. 81–92. VLDB Endowment (2003)
Angiulli, F., Fassetti, F.: Detecting distance-based outliers in streams of data. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 811–820. ACM (2007)
Assent, I., Kranen, P., Baldauf, C., Seidl, T.: AnyOut: anytime outlier detection on streaming data. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7238, pp. 228–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29038-1_18
Behera, R.K., Das, S., Jena, M., Rath, S.K., Sahoo, B.: A comparative study of distributed tools for analyzing streaming data. In: 2017 International Conference on Information Technology (ICIT), pp. 79–84 (2017)
Bifet, A., Morales, G.D.F.: Big data stream learning with SAMOA. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 1199–1202, December 2014. https://doi.org/10.1109/ICDMW.2014.24
Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams with Practical Examples in MOA. MIT Press (2018). https://moa.cms.waikato.ac.nz/book/
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010). http://portal.acm.org/citation.cfm?id=1859903
Bifet, A., Maniu, S., Qian, J., Tian, G., He, C., Fan, W.: StreamDM: advanced data mining in spark streaming. In: International Conference on Data Mining Workshops (ICDMW). IEEE, November 2015. https://doi.org/10.1109/ICDMW.2015.140. https://hal.inria.fr/hal-01270606
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. Vol. 46(20), 12–17 (2013). https://doi.org/10.3182/20130902-3-CN-3020.00044
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9), 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8
Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)
Hariri, S., Kind, M.C., Brunner, R.J.: Extended isolation forest. arXiv preprint arXiv:1811.02141 (2018)
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 3 (2012)
Manapragada, C., Webb, G.I., Salehi, M.: Extremely fast decision tree. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018. Association for Computing Machinery (2018). https://doi.org/10.1145/3219819.3220005
Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-Multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018). http://jmlr.org/papers/v19/18-251.html
Pokrajac, D., Lazarevic, A., Latecki, L.J.: Incremental local outlier detection for data streams. In: 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp. 504–515. IEEE (2007)
Salehi, M., Rashidi, L.: A survey on anomaly detection in evolving data: [with application to forest fire risk prediction]. ACM SIGKDD Explor. Newslett. 20(1), 13–23 (2018)
Staerman, G., Mozharovskyi, P., Clémençon, S., d’Alché Buc, F.: Functional isolation forest (2019)
Tan, S.C., Ting, K.M., Liu, F.T.: Fast anomaly detection for streaming data. In: IJCAI (2011)
Tellis, V.M., D’Souza, D.J.: Detecting anomalies in data stream using efficient techniques: a review. In: 2018 International Conference ICCPCCT. IEEE (2018)
Thakkar, P., Vala, J., Prajapati, V.: Survey on outlier detection in data stream. Int. J. Comput. Appl. 136, 13–16 (2016)
Togbe, M.U., Chabchoub, Y., Boly, A., Chiky, R.: Etude comparative des méthodes de détection d’anomalies. Revue des Nouvelles Technologies de l’Information Extraction et Gestion des Connaissances, RNTI-E-36, pp. 109–120 (2020)
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Amsterdam (2017)
Yamanishi, K., Takeuchi, J.I., Williams, G., Milne, P.: On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min. Knowl. Disc. 8(3), 275–300 (2004)
Acknowledgements
We would like to thank Albert BIFET from the University of Waikato and Télécom Paris for his insightful discussions about Big Data Streams mining, Adrien CHESNAUD and Zhansaya SAILAUBEKOVA for their contributions on the code, and Fabrice LE DEIT from BNP Paribas IT Group for supporting the project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Togbe, M.U. et al. (2020). Anomaly Detection for Data Streams Based on Isolation Forest Using Scikit-Multiflow. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-58811-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58810-6
Online ISBN: 978-3-030-58811-3
eBook Packages: Computer ScienceComputer Science (R0)