Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extracting Land Cover Data Using GEE: A Review of the Classification Indices

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Land Use/Land Cover (LU/LC) data includes most of the information suitable for tackling many environmental issues. Remote sensing is largely recognized as the most significant method to extract them through the application of various techniques. They can be extracted through the application of many techniques. Among the several classification approaches, the index-based method has been recognized as the best one to gather LU/LC information from different images sources. The present work is intended to assess its performance exploiting the great potentialities of Google Earth Engine (GEE), a cloud-processing environment introduced by Google to storage and handle a large number of information. Twelve atmospherically corrected Landsat satellite images were collected on the experimental site of Siponto, in Southern Italy. Once the clouds masking procedure was completed, a large number of indices were implemented and compared in GEE platform to detect sparse and dense vegetation, water, bare soils and built-up areas. Among the tested algorithms, only NDBaI2, CVI, WI2015, SwiRed and STRed indices showed satisfying performance. Although NDBaI2 was able to extract all the main LU/LC categories with a high Overall Accuracy (OA) (82.59%), the other mentioned indices presented a higher accuracy than the first one but are able to identify just few classes. An interesting performance is shown by the STRed index since it has a very high OA and can extract mining areas, water and green zones. GEE appeared the best solution to manage the geospatial big data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, L., Mutanga, O.: Google earth engine applications since inception: usage, trends, and potential. Rem. Sens 10(10), 1509 (2018)

    Article  Google Scholar 

  2. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Rem. Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  3. Susaki, J., Shibasaki, R.: Maximum likelihood method modified in estimating a prior probability and in improving misclassification errors. Int. Arch. Photogram. Rem. Sens. 33, 1499–1504 (2000)

    Google Scholar 

  4. Abdi, A.: Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Rem. Sens. 57, 1–20 (2020)

    Article  Google Scholar 

  5. Capolupo, A., Kooistra, L., Boccia, L.: A novel approach for detecting agricultural terraced landscapes from historical and contemporaneous photogrammetric aerial photos. Int. J. Appl. Earth Obs. Geoinf. 73, 800–810 (2018)

    Article  Google Scholar 

  6. Crocetto, N., Tarantino, E.: A class-oriented strategy for features extraction from multidate ASTER imagery. Rem. Sens. 1(4), 1171–1189 (2009)

    Article  Google Scholar 

  7. Patel, N.N., Angiuli, E., et al.: Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 35, 199–208 (2015)

    Article  Google Scholar 

  8. Mateo-García, G., Gómez-Chova, L., Amorós-López, J., Muñoz-Marí, J., Camps-Valls, G.: Multitemporal cloud masking in the Google Earth Engine. Rem. Sens. 10(7), 1079 (2018)

    Article  Google Scholar 

  9. Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., Suomalainen, J.: Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS Int. J. Geo-Inf. 4(4), 2792–2820 (2015)

    Article  Google Scholar 

  10. Kazakis, N., Kougias, I., Patsialis, T.: Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope-Evros region, Greece. Sci. Total Environ. 538, 555–563 (2015)

    Article  Google Scholar 

  11. Southworth, J.: An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions. Int. J. Remote Sens. 25, 689–706 (2004)

    Article  Google Scholar 

  12. Yusuf, B.L., He, Y.: Application of hyperspectral imaging sensor to differentiate between the moisture and reflectance of healthy and infected tobacco leaves. Afr. J. Agric. Res. 6(29), 6267–6280 (2011)

    Google Scholar 

  13. Li, S., Chen, X.: A new bare-soil index for rapid mapping developing areas using landsat 8 data. Int. Arch. Photogram. Rem. Sens. Spat. Inf. Sci. 40(4), 139 (2014)

    Article  Google Scholar 

  14. Capolupo, A., Monterisi, C., Tarantino, E.: Landsat images classification algorithm (LICA) to automatically extract land cover information in google earth engine environment. Rem. Sens. 12(7), 1201 (2020)

    Article  Google Scholar 

  15. Capolupo, A., Saponaro, M., Fratino, U., Tarantino, E.: Detection of spatio-temporal changes of vegetation in coastal areas subjected to soil erosion issue. Aquatic Ecosystem Health & Management. (in press)

    Google Scholar 

  16. Sakamoto, T., Gitelson, A.A., Wardlow, B.D., Verma, S.B., Suyker, A.E.: Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data. Rem. Sens. Environ. 115(12), 3091–3101 (2011)

    Article  Google Scholar 

  17. Pengra, B., Long, J., Dahal, D., Stehman, S.V., Loveland, T.R.: A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Rem. Sens. Environ. 165, 234–248 (2015)

    Article  Google Scholar 

  18. Caprioli, M., Tarantino, E.: Accuracy assessment of per-field classification integrating very fine spatial resolution satellite imagery with topographic data. J. Geospat. Eng. 3(2), 127–134 (2001)

    Google Scholar 

  19. Caprioli, M., Scognamiglio, A., Strisciuglio, G., Tarantino, E.: Rules and standards for spatial data quality in GIS environments. In: Proceedings of 21st International Cartographic Conference Durban, South Africa, 10–16 August 2003 (2003)

    Google Scholar 

  20. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using landsat imagery. Rem. Sens. Environ. 140, 23–35 (2014)

    Article  Google Scholar 

  21. Misra, P.N.: Kauth-Thomas brightness and greenness axes. Contract NASA, 23–46 (1977)

    Google Scholar 

  22. Broge, N.H., Leblanc, E.: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Rem.0 Sens. Environ. 76(2), 156–172 (2001)

    Article  Google Scholar 

  23. Zhao, H., Chen, X.: Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM + . In: International Geoscience and Remote Sensing Symposium, vol. 3, p. 1666 (2005)

    Google Scholar 

  24. Chandra, P.: Performance evaluation of vegetation indices using remotely sensed data. Int. J. Geomatics Geosci. 2(1), 231–240 (2011)

    Google Scholar 

  25. Fisher, A., Flood, N., Danaher, T.: Comparing Landsat water index methods for automated water classification in eastern Australia. Rem. Sens. Environ. 175, 167–182 (2016)

    Article  Google Scholar 

  26. Karnieli, A., Kaufman, Y.J., Remer, L., Wald, A.: AFRI—aerosol free vegetation index. Rem. Sens. Environ. 77(1), 10–21 (2001)

    Article  Google Scholar 

  27. Gong, P., Pu, R., Biging, G.S., Larrieu, M.R.: Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 40, 1355–1362 (2003)

    Article  Google Scholar 

  28. Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S.: A modified soil adjusted vegetation index. Rem. Sens. Environ. 48, 119–126 (1994)

    Article  Google Scholar 

  29. Kaufman, Y.J., Tanre, D.: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Rem. Sens. 30(2), 261–270 (1992)

    Article  Google Scholar 

  30. Jackson, R.D., Slater, P.N., Pinter, P.J.: Adjusting the tasselled-cap brightness and greenness factors for atmospheric path radiance and absorption on a pixel by pixel basis. Int. J. Rem. Sens. 4(2), 313–323 (1983)

    Article  Google Scholar 

  31. Chen, J.M.: Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Rem. Sens. 22(3), 229–242 (1996)

    Article  MathSciNet  Google Scholar 

  32. Ashburn, P.: The vegetative index number and crop identification. In: The LACIE Symposium, Proceedings of the Technical Session, USA, Houston, TX, USA (1978)

    Google Scholar 

  33. Chen, X.L., Zhao, H., Li, P., Yin, Z.: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Rem. Sens. Environ. 104, 133–146 (2006)

    Article  Google Scholar 

  34. Li, H., et al.: Mapping urban bare land automatically from Landsat imagery with a simple index. Rem. Sens. 9(3), 249 (2017)

    Article  Google Scholar 

  35. Bouzekri, S., Lasbet, A.A., Lachehab, A.: A new spectral index for extraction of built-up area using Landsat-8 data. J. Indian Soc. Rem. Sens. 43(4), 867–873 (2017)

    Article  Google Scholar 

  36. Sinha, P., Verma, N.K.: Urban built-up area extraction and change detection of adama municipal area using time-series landsat images. Int. J. Adv. Rem. Sens. GIS 5(8), 1886–1895 (2016)

    Article  Google Scholar 

  37. Deng, C., Wu, C.: BCI: A biophysical composition index for remote sensing of urban environments. Rem. Sens. Environ. 127, 247–259 (2012)

    Article  Google Scholar 

  38. Vescovo, L., Gianelle, D.: Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy). Adv. Space Res. 41, 1764–1772 (2008)

    Article  Google Scholar 

  39. Bouhennache, R., Bouden, T., Taleb-Ahmed, A., Cheddad, A.: A new spectral index for the extraction of built-up land features from Landsat 8 satellite imagery. Geocarto Int. 34(14), 1531–1551 (2019)

    Article  Google Scholar 

  40. Luo, N., Wan, T., Hao, H., Lu, Q.: Fusing high-spatial-resolution remotely sensed imagery and OpenStreetMap data for land cover classification over urban areas. Rem. Sens. 11(1), 88 (2019)

    Article  Google Scholar 

  41. Kaimaris, D., Patias, P.: Identification and area measurement of the built-up area with the built-up index (BUI). Int. J. Adv. Rem. Sens. GIS 5(6), 1844–1858 (2016)

    Article  Google Scholar 

  42. Zha, Y., Gao, J., Ni, S.: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Rem. Sens. 24(3), 583–594 (2003)

    Article  Google Scholar 

  43. Zhang, S., Yang, K., Li, M., Ma, Y., Sun, M.: Combinational biophysical composition index (CBCI) for effective mapping biophysical composition in urban areas. IEEE Access 6, 41224–41237 (2018)

    Article  Google Scholar 

  44. Xu, H.: Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogram. Eng. Rem. Sens. 76(5), 557–565 (2010)

    Article  Google Scholar 

  45. Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003)

    Article  Google Scholar 

  46. Jin, S., Sader, S.A.: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Rem. Sens. Environ. 94(3), 364–372 (2005)

    Article  Google Scholar 

  47. Van Deventer, A.P., Ward, A.D., Gowda, P.H., Lyon, J.G.: Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogram. Eng. Rem. Sens. 63, 87–93 (1997)

    Google Scholar 

  48. Davies, D., Bouldin, D.: A clustering separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  49. Rouse Jr, J., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring vegetation systems in the Great Plains with ERTS (1974)

    Google Scholar 

  50. Rasul, A., et al.: Applying built-up and bare-soil indices from landsat 8 to cities in dry climates. Land 7(3), 81 (2018)

    Article  Google Scholar 

  51. McFeeters, S.K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Rem. Sens. 17(7), 1425–1432 (1996)

    Article  Google Scholar 

  52. Tucker, C.J.: A spectral method for determining the percentage of green herbage material in clipped samples. Rem. Sens. Environ. 9(2), 175–181 (1980)

    Article  Google Scholar 

  53. Goel, N.S., Qin, W.: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation. Rem. Sens. Rev. 104, 309–347 (1994)

    Article  Google Scholar 

  54. As-syakur, A., Adnyana, I., Arthana, I.W., Nuarsa, I.W.: Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sensing 4(10), 2957–2970 (2012)

    Article  Google Scholar 

  55. Rondeaux, G., Steven, M., Baret, F.: Optimization of soil-adjusted vegetation indices. Rem. Sens. Environ. 55(2), 95–107 (1996)

    Article  Google Scholar 

  56. Chen, J., Yang, K., Chen, S., Yang, C., Zhang, S., He, L.: Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale. J. Appl. Rem. Sens. 13(1), 016502 (2019)

    Article  Google Scholar 

  57. Roujean, J.L., Breon, F.M.: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Rem. Sens. Environ. 51(3), 375–384 (1995)

    Article  Google Scholar 

  58. Matsushita, B., Yang, W., Chen, J., Onda, Y., Qiu, G.: Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7(11), 2636–2651 (2007)

    Article  Google Scholar 

  59. Pearson, R.L., Miller, L.D.: Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. In: Eighth International Symposium on Remote Sensing of Environment, University of Michigan (1972)

    Google Scholar 

  60. Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N.: Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Rem. Sens. Environ. 58(3), 289–298 (1996)

    Article  Google Scholar 

  61. Huete, A.R.: A soil-adjusted vegetation index (SAVI). Rem. Sens. Environ. 25(3), 295–309 (1988)

    Article  Google Scholar 

  62. Zheng, Q., Zeng, Y., Deng, J., Wang, K., Jiang, R., Ye, Z.: “Ghost cities” identification using multi-source remote sensing datasets: a case study in Yangtze River Delta. Appl. Geogr. 80, 112–121 (2017)

    Article  Google Scholar 

  63. Thompson, D.R., Wehmanen, O.A.: Using landsat digital data to detect moisture stress in corn-soybean growing regions. Photogram. Eng. Rem. Sens. 46(8), 1087–1093 (1980)

    Google Scholar 

  64. Wu, W.: The generalized difference vegetation index (GDVI) for dryland characterization. Rem. Sens. 6(2), 1211–1233 (2014)

    Article  MathSciNet  Google Scholar 

  65. Lymburner, L., Beggs, P.J., Jacobson, C.R.: Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogram. Eng. Rem. Sens. 66(2), 183–192 (2000)

    Google Scholar 

  66. Pinty, B., Verstraete, M.M.: GEMI: a non-linear index to monitor global vegetation from satellites. Vegetation 101(1), 15–20 (1992)

    Article  Google Scholar 

  67. Jordan, C.: Derivation of leaf area index from quality of light on the forest floor Ecology. Ecology 50, 663–666 (1969)

    Article  Google Scholar 

  68. Louhaichi, M., Borman, M.M., Johnson, D.E.: Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 16(19), 65–70 (2001)

    Article  Google Scholar 

  69. Sripada, R.P., Heiniger, R.W., White, J.G., Meijer, A.D.: Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 98(4), 968–977 (2006)

    Article  Google Scholar 

  70. Bandari, A., Asalhi, H., Teillet, P.M.: Transformed difference vegetation index (TDVI) for vegetation cover mapping. In: IEEE International geoscience and remote sensing symposium, vol. 5, pp. 3053–3055 (2002)

    Google Scholar 

  71. Motohka, T., Nasahara, K.N., Oguma, H., Tsuchida, S.: Applicability of green-red vegetation index for remote sensing of vegetation phenology. Rem. Sens. 2(10), 2369–2387 (2010)

    Article  Google Scholar 

  72. Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S., Perry, E.M., Akhmedov, B.: A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Observ. 21, 103–112 (2013)

    Article  Google Scholar 

  73. Jackson, R.: Spectral indices in n-space. Rem. Sens. Environ. 13, 409–421 (1983)

    Article  Google Scholar 

  74. Kawamura, M.: Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. In: Proceedings 51st Annual Conference of the Japan Society of Civil Engineers, pp. 190–191 (1996)

    Google Scholar 

  75. Han-Qiu, X.U.: A new index-based built-up index (IBI) and its eco-environmental significance. Rem. Sens. Technol. Appl. 22(3), 301–308 (2011)

    Google Scholar 

  76. Gittelson, A.A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., Derry, D.: Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. Int. J. Rem. Sens. 23, 2537–2562 (2002)

    Article  Google Scholar 

  77. Crippen, R.E.: Calculating the vegetation index faster. Rem. Sens. Environ. 34(1), 71–73 (1990)

    Article  Google Scholar 

  78. Liu, F., Liu, S.H., Xiang, Y.: Study on remote sensing monitoring of vegetation coverage in the field. Trans. CSAM 45(11), 250–257 (2014)

    Google Scholar 

  79. Stathakis, D., Perakis, K., Savin, I.: Efficient segmentation of urban areas by the VIBI. Int. J. Rem. Sens. 33(20), 6361–6377 (2012)

    Article  Google Scholar 

  80. Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Rem. Sens. Environ. 90, 337–352 (2004)

    Article  Google Scholar 

  81. Gobron, N., Pinty, B., Verstraete, M., Govaerts, Y.: The MERIS global vegetation index (MGVI): description and preliminary application. Int. J. Rem. Sens. 20(9), 1917–1927 (1999)

    Article  Google Scholar 

  82. Wolf, A.F.: Using WorldView-2 Vis-NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, vol. 8390 (2012)

    Google Scholar 

  83. Fall, A.G.U.: Snow monitoring using remote sensing data: modification of normalized difference snow index (2016)

    Google Scholar 

  84. Kauth, R.J., Thomas, G.S.: The tasselled cap—a graphic description of the spectral temporal development of agricultural crops as seen by Landsat. In: Proceedings of Symposium on Machine Processing of Remotely Sensed Data, pp. 41–51 (1976)

    Google Scholar 

  85. Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Rem. Sens. 27(14), 3025–3033 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Capolupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capolupo, A., Monterisi, C., Caporusso, G., Tarantino, E. (2020). Extracting Land Cover Data Using GEE: A Review of the Classification Indices. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics