Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Refining Approach of PrOnto Ontology

  • Conference paper
  • First Online:
Electronic Government and the Information Systems Perspective (EGOVIS 2020)

Abstract

This paper presents a refinement of PrOnto ontology using a validation test based on legal experts’ annotation of privacy policies combined with an Open Knowledge Extraction (OKE) algorithm. To ensure robustness of the results while preserving an interdisciplinary approach, the integration of legal and technical knowledge has been carried out as follows. The set of privacy policies was first analysed by the legal experts to discover legal concepts and map the text into PrOnto. The mapping was then provided to computer scientists to perform the OKE analysis. Results were validated by the legal experts, who provided feedbacks and refinements (i.e. new classes and modules) of the ontology according to MeLOn methodology. Three iterations were performed on a set of (development) policies, and a final test using a new set of privacy policies. The results are 75,43% of detection of concepts in the policy texts and an increase of roughly 33% in the accuracy gain on the test set, using the new refined version of PrOnto enriched with SKOS-XL lexicon terms and definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/TR/sparql11-query/, last accessed 2020/06/19.

  2. 2.

    https://www.w3.org/TR/rdf11-concepts/, last accessed 2020/06/19.

  3. 3.

    https://www.w3.org/TR/skos-reference/skos-xl.html, last accessed 2020/06/19.

  4. 4.

    PrOnto reuses existing ontologies ALLOT [4] FRBR [19], LKIF [6] we use in particular lkif:Agent to model lkif:Organization, lkif:Person and lkif:Role [6], the Publishing Workflow Ontology (PWO) [13], Time-indexed Value in Context (TVC) and Time Interval [30]. Now with this work we include also SKOS-XL [5, 8].

  5. 5.

    Rover, Parkclick, Springer, Zalando, Louis Vuitton, Burger King, Microsoft-Skype, Lufthansa, Booking, Zurich Insurance.

  6. 6.

    https://spacy.io, last accessed 2020/06/19.

  7. 7.

    https://gitlab.com/CIRSFID/un-challange-2019, last accessed 2020/06/19.

  8. 8.

    https://www.betterinternetforkids.eu/web/portal/practice/awareness/detail?articleId=3017751, last accessed 2020/06/19.

  9. 9.

    COM (2019) 250 final “data which were initially personal data, but were later made anonymous. The ‘anonymisation’ of personal data is different to pseudonymisation (see above), as properly anonymised data cannot be attributed to a specific person, not even by use of additional data and are therefore non-personal data”.

  10. 10.

    Recital 26 GDPR “5. The principles of data protection should therefore not apply to anonymous information, namely information which does not relate to an identified or identifiable natural person or to personal data rendered anonymous in such a manner that the data subject is not or no longer identifiable. 6. This Regulation does not therefore concern the processing of such anonymous information, including for statistical or research purposes”.

  11. 11.

    https://www.specialprivacy.eu/, last accessed 2020/06/19.

  12. 12.

    https://publications.europa.eu/en/web/eu-vocabularies/th-dataset/-/resource/dataset/eurovoc, last accessed 2020/06/19.

  13. 13.

    https://iate.europa.eu/, last accessed 2020/06/19.

  14. 14.

    https://www.w3.org/TR/skos-reference/skos-xl.html, last accessed 2020/06/19.

References

  1. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for open domain information extraction. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1: Long Papers, pp. 344–354 (2015)

    Google Scholar 

  2. Ashley, K.D.: Artificial intelligence and Legal Analytics: New Tools for Law Practice in the Digital Age. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  3. Bandeira, J., Bittencourt, I.I., Espinheira, P., Isotani, S.: FOCA: a methodology for ontology evaluation. Eprint ArXiv (2016)

    Google Scholar 

  4. Barabucci, G., Cervone, L., Di Iorio, A., Palmirani, M., Peroni, S., Vitali, F.: Managing semantics in XML vocabularies: an experience in the legal and legislative domain. In: Proceedings of Balisage: The Markup Conference, vol. 5 (2010)

    Google Scholar 

  5. Bosque-Gil, J., Gracia, J., Montiel-Ponsoda E.: Towards a module for lexicography in OntoLex. In: Proceedings of the LDK Workshops: OntoLex, TIAD and Challenges for Wordnets at 1st Language Data and Knowledge Conference (LDK 2017), Galway, Ireland, vol. 1899, pp. 74–84. CEUR-WS (2017)

    Google Scholar 

  6. Breuker, J., et al.: OWL Ontology of Basic Legal Concepts (LKIF-Core), Deliverable No. 1.4. IST-2004-027655 ESTRELLA: European project for Standardised Transparent Representations in order to Extend Legal Accessibility (2007)

    Google Scholar 

  7. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  8. Declerck, T., Egorova, K., Schnur, E.: An integrated formal representation for terminological and lexical data included in classification schemes. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018) (2018)

    Google Scholar 

  9. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 355–366. ACM (2013)

    Google Scholar 

  10. Fernández-Barrera, M., Sartor, G.: The legal theory perspective: doctrinal conceptual systems vs. computational ontologies. In: Sartor, G., Casanovas, P., Biasiotti, M., Fernández-Barrera, M. (eds.) Approaches to Legal Ontologies. Law, Governance and Technology Series, vol. 1, pp. 15–47. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0120-5_2

    Chapter  Google Scholar 

  11. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45810-7_18

    Chapter  MATH  Google Scholar 

  12. Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: The publishing workflow ontology (PWO). Semant. Web 8, 703–718 (2017). https://doi.org/10.3233/SW-160230

    Article  Google Scholar 

  13. Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F., Mongiovì, M.: Semantic web machine reading with FRED. Semant. Web 8(6), 873–893 (2017)

    Article  Google Scholar 

  14. Guarino, N., Welty, C.A.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 151–171. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_8

    Chapter  Google Scholar 

  15. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A. (eds.): Ontology Engineering with Ontology Design Patterns: Foundations and Applications. Studies on the Semantic Web. IOS Press, Amsterdam (2016)

    Google Scholar 

  16. http://openscience.adaptcentre.ie/ontologies/GConsent/docs/ontology. Accessed 19 June 2020

  17. http://www.w3.org/2016/05/ontolex. Accessed 19 June 2020

  18. https://www.w3.org/ns/dpv#data-controller. Accessed 19 June 2020

  19. IFLA Study Group on the Functional Requirements for Bibliographic Records. Functional Requirements for Bibliographic Records. IFLA Series on Bibliographic Control. De Gruyter Saur (1996)

    Google Scholar 

  20. Liebwald, D.: Law’s capacity for vagueness. International Journal for the Semiotics of Law-Revue internationale de Sémiotique juridique 26(2), 391–423 (2012)

    Article  Google Scholar 

  21. Lockard, C., Shiralkar, P., Dong, X.L.: OpenCeres: when open information extraction meets the semi-structured web. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 3047–3056 (2019)

    Google Scholar 

  22. McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_17

    Chapter  Google Scholar 

  23. Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy policies. Semant. Web, 1–19 (2016)

    Google Scholar 

  24. Palmirani, M., Bincoletto, G., Leone, V., Sapienza, S., Sovrano, F.: PrOnto ontology refinement through open knowledge extraction. In: Jurix 2019 Proceedings, pp. 205–210 (2019)

    Google Scholar 

  25. Palmirani, M., Governatori, G.: Modelling legal knowledge for GDPR compliance checking. In: JURIX 2018 Proceedings, pp. 101–110 (2018)

    Google Scholar 

  26. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: PrOnto: privacy ontology for legal reasoning. In: Kő, A., Francesconi, E. (eds.) EGOVIS 2018. LNCS, vol. 11032, pp. 139–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98349-3_11

    Chapter  Google Scholar 

  27. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Legal ontology for modelling GDPR concepts and norms. In: JURIX 2018 Proceedings, pp. 91–100 (2018)

    Google Scholar 

  28. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: PrOnto: privacy ontology for legal compliance. In: Proceedings of the 18th European Conference on Digital Government ECDG 2018, Reading UK, Academic Conferences and Publishing International Limited, 2018, pp. 142–151 (2018)

    Google Scholar 

  29. Pandit, H.J., Fatema, K., O’Sullivan, D., Lewis, D.: GDPRtEXT - GDPR as a linked data resource. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 481–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_31

    Chapter  Google Scholar 

  30. Pandit, H.J., Lewis, D.: Modelling provenance for gdpr compliance using linked open data vocabularies. In: Proceedings of the 5th Workshop on Society, Privacy and the Semantic Web - Policy and Technology (PrivOn2017) co-located with the 16th International Semantic Web Conference (ISWC 2017) (2017)

    Google Scholar 

  31. Peroni, S., Palmirani, M., Vitali, F.: UNDO: the united nations system document ontology. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 175–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_18

    Chapter  Google Scholar 

  32. Rossi, A., Palmirani, M.: DaPIS: an ontology-based data protection icon set. In: Peruginelli, G., Faro, S. (eds.) Knowledge of the Law in the Big Data Age. Frontiers in Artificial Intelligence and Applications, vol. 317. IOS Press (2019)

    Google Scholar 

  33. Roussey, C., Pinet, F., Kang, M.A., Corcho, O.: An introduction to ontologies and ontology engineering. In: Falquet, G., Métral, C., Teller, J., Tweed, C. (eds.) Ontologies in Urban Development Projects. Advanced Information and Knowledge Processing, vol. 1, pp. 9–38. Springer, London (2011). https://doi.org/10.1007/978-0-85729-724-2_2

    Chapter  Google Scholar 

  34. Sovrano, F., Palmirani, M., Vitali, F.: Deep learning based multi-label text classification of UNGA resolutions. arXiv preprint arXiv:2004.03455 (2020)

  35. van Opijnen, M., Santos, C.: On the concept of relevance in legal information retrieval. Artif. Intell. Law 25(1), 65–87 (2017). https://doi.org/10.1007/s10506-017-9195-8

    Article  Google Scholar 

  36. Welty, Chris, Murdock, J.W.: Towards knowledge acquisition from information extraction. In: Cruz, Isabel, Decker, Stefan, Allemang, Dean, Preist, Chris, Schwabe, Daniel, Mika, Peter, Uschold, Mike, Aroyo, Lora M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 709–722. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_51

    Chapter  Google Scholar 

  37. Wilson, S., et al.: Analyzing privacy policies at scale: from crowdsourcing to automated annotations. ACM Trans. Web 13, 1 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690974 “MIREL: MIning and REasoning with Legal texts”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Palmirani .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section we will provide additional data (technical results and measurements) resulting from the experiments described in this paper. More precisely, we present the statistics obtained from the experiments on both the first and the second set of privacy policies.

First Set of Privacy Policies (Development Set)

PrOnto version

SKOS support

Found ontology concepts

Ontology concepts

Presence

Accuracy gain

8

No

87

139

62,65%

0%

9

No

111

172

64,91%

27,58%

9

Yes

123

172

71,92%

41,37%

Second Set of Privacy Policies (Test Set)

PrOnto version

SKOS support

Found ontology concepts

Ontology concepts

Presence

Accuracy gain

8

No

97

139

69,78%

0%

9

No

119

172

69,59%

22,68%

9

Yes

129

172

75,43%

32,98%

Where:

  • The “Accuracy Gain” is computed as (x2 - x1)/x1, where x1 is the number of “Found Ontology Concepts” with PrOnto v8 without SKOS support and x2 is the number of “Found Ontology Concepts” of any of the other versions of PrOnto.

  • The “Presence” is computed as the ratio of “Found Ontology Concepts” and “Ontology Concepts”.

  • Ontology Concepts” is the total number of concepts in the ontology.

  • Found Ontology Concepts” is the number of concepts of the ontology that have been identified by the OKE tool in the set of policies. “Found Ontology Concepts” is always lower than “Ontology Concepts”.

  • SKOS Support” is a boolean indicating whether it has been used SKOS support or not.

  • PrOnto Version” indicates the version of PrOnto.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palmirani, M., Bincoletto, G., Leone, V., Sapienza, S., Sovrano, F. (2020). Hybrid Refining Approach of PrOnto Ontology. In: Kő, A., Francesconi, E., Kotsis, G., Tjoa, A., Khalil, I. (eds) Electronic Government and the Information Systems Perspective. EGOVIS 2020. Lecture Notes in Computer Science(), vol 12394. Springer, Cham. https://doi.org/10.1007/978-3-030-58957-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58957-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58956-1

  • Online ISBN: 978-3-030-58957-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics