Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Audio Feature Analysis for Precise Vocalic Segments Classification in English

  • Conference paper
  • First Online:
Multimedia Communications, Services and Security (MCSS 2020)

Abstract

An approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal recorded employing 7 speakers who spoke English at the native or near-native speaker level withing a Standard Southern British English variety accent. The recordings were analyzed by specialists from the field of phonology in order to extract vocalic segments and selected allophones. Then parameterization was made using Mel Frequency Cepstral Coefficients, Delta MFCC, and Delta Delta MFCC. In the next stage, feature vectors were passed to the input of individual algorithms utilized to reduce the size of the vector by previously mentioned algorithms. The vectors prepared in this way have been used for classifying allophones and vocalic segments employing simple Artificial Neural Network (ANN) and Support Vector Machine (SVM). The classification results using both classifiers and methods applied for reducing the number of parameters were presented. The results of the reduction are also shown explicitly, by indicating parameters proven to be significant and those rejected by particular algorithms. Factors influencing the obtained results were discussed. Difficulties associated with obtaining the data set, its labeling, and research on allophones were also analyzed.

Dataset employed in this research available at website: https://modality-corpus.org in ALOFON corpus section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karpagavalli, S., Chandra, E.: A review on automatic speech recognition architecture and approaches. Int. J. Sig. Process. Image Process. Pattern Recogn. 9(4), 393–404 (2016)

    Google Scholar 

  2. Xu, D., Qian, H., Xu, Y.: The state of the art in human–robot interaction for household services (chap. 6.1). In: Xu, D., Qian, H., Xu, Y. (eds.) Household Service Robotics, pp. 457–465. Academic Press, Oxford (2015)

    Google Scholar 

  3. Piotrowska, M., Korvel, G., Kurowski, A., Kostek, B., Czyzewski, A.: Machine learning applied to aspirated and non-aspirated allophone classification—An approach based on audio ‘Fingerprinting’. In: 145 Audio Engineering Society Convention (2018)

    Google Scholar 

  4. Recasens, D.: A cross-language acoustic study of initial and final allophones of /l/. Speech Commun. 54(3), 368–383 (2012)

    Article  Google Scholar 

  5. German, J.S., Carlson, K., Pierrehumbert, J.B.: Reassignment of consonant allophones in rapid dialect acquisition. J. Phon. 41(3–4), 228–248 (2013)

    Article  Google Scholar 

  6. Drahanský, M., Orság, F.: Fingerprints and speech recognition as parts of the biometry. In: Proceedings of 36th International Conference MOSIS, pp. 177–183 (2002)

    Google Scholar 

  7. Noordenbos, M.W., Segers, E., Serniclaes, W., Mitterer, H., Verhoeven, L.: Allophonic mode of speech perception in Dutch children at risk for dyslexia: a longitudinal study. Res. Dev. Disabil. 33(5), 1469–1483 (2012)

    Article  Google Scholar 

  8. Zaporowski, S., Cygert, S., Szwoch, G., Korvel, G., Czyżewski, A.: Rejestracja, parametryzacja i klasyfikacja alofonów z wykorzystaniem bimodalności (2018)

    Google Scholar 

  9. Piotrowska, M., Korvel, G., Kostek, B., Ciszewski, T., Czyzewski, A.: Machine learning-based analysis of English lateral allophones. Int. J. Appl. Math. Comput. Sci. 29(2), 393–405 (2019)

    Article  Google Scholar 

  10. Zaporowski, S., Czyżewski, A.: Selection of features for multimodal vocalic segments classification. In: Choroś, K., Kopel, M., Kukla, E., Siemiński, A. (eds.) MISSI 2018. AISC, vol. 833, pp. 490–500. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98678-4_49

    Chapter  Google Scholar 

  11. Jeevan, M., Dhingra, A., Hanmandlu, M., Panigrahi, B.K.: Robust speaker verification using GFCC based i-vectors. In: Lobiyal, D., Mohapatra, D.P., Nagar, A., Sahoo, M. (eds.) Proceedings of the International Conference on Signal, Networks, Computing, and Systems. LNEE, vol. 395, pp. 85–91. Springer, New Delhi (2017). https://doi.org/10.1007/978-81-322-3592-7_9

    Chapter  Google Scholar 

  12. Xu, J., Si, Y., Pan, J., Yan, Y.: Automatic allophone deriving for Korean speech recognition. In: Proceedings - 9th International Conference on Computational Intelligence and Security, CIS 2013, pp. 776–779 (2013)

    Google Scholar 

  13. Korvel, G., Kostek, B.: Examining feature vector for phoneme recognition. In: 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 394–398 (2017)

    Google Scholar 

  14. Kostek, B., Piotrowska, M., Ciszewski, T., Czyzewski, A.: No comparative study of self-organizing maps vs subjective evaluation of quality of allophone pronunciation for non-native English speakers. In: Audio Engineering Society Convention 143 (2017)

    Google Scholar 

  15. Kostek, B., et al.: Report of the ISMIS 2011 contest: music information retrieval. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 715–724. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_75

    Chapter  Google Scholar 

  16. Sikora, T., Kim, H.G., Moreau N.: MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval. Wiley, Hoboken (2005)

    Google Scholar 

  17. Eringis, D., Tamulevičius, G.: Modified filterbank analysis features for speech recognition. Baltic J. Mod. Comput. 3(1), 29–42 (2015)

    Google Scholar 

  18. Zheng, F., Zhang, G., Song, Z.: Comparison of different implementations of MFCC. J. Comput. Sci. Technol. 16, 582–589 (2001). https://doi.org/10.1007/BF02943243

  19. Multimedia Systems Department: Modality Corpus (2018). http://modality-corpus.org/. Accessed 13 Feb 2020

  20. Cygert, S., Szwoch, G., Zaporowski, S., Czyzewski, A.: Vocalic segments classification assisted by mouth motion capture. In: 2018 11th International Conference on Human System Interaction (HSI), pp. 318–324 (2018)

    Google Scholar 

  21. Bro, R., Smilde, A.K.: Principal component analysis. Anal. Methods 6, 2812–2831 (2014)

    Article  Google Scholar 

  22. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  23. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  24. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of randomized trees. Adv. Neural. Inf. Process. Syst. 26, 431–439 (2013)

    Google Scholar 

  25. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)

    Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Mao, Y., Pi, D., Liu, Y., Sun, Y.: Accelerated recursive feature elimination based on support vector machine for key variable identification. Chin. J. Chem. Eng. 14, 65–72 (2006)

    Article  Google Scholar 

  28. Chollet, F.: Keras (2015). https://keras.io. Accessed 10 Sept 2018

Download references

Acknowledgment

Research sponsored by the Polish National Science Centre, Dec. No. 2015/17/B/ST6/01874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Zaporowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaporowski, S., Czyżewski, A. (2020). Audio Feature Analysis for Precise Vocalic Segments Classification in English. In: Dziech, A., Mees, W., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2020. Communications in Computer and Information Science, vol 1284. Springer, Cham. https://doi.org/10.1007/978-3-030-59000-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59000-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58999-8

  • Online ISBN: 978-3-030-59000-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics