Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Internet-Scale NATs for IoT Devices Based on Tri-Net

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12384))

Abstract

Due to the lack of available labeled Network Address Translation (NAT) samples, it is still difficult to actively detect the large-scale NATs on the Internet. In this paper, we propose an novel method to identify NATs for online Internet of Things (IoT) devices based on Tri-net (a semi-supervised deep neural network). By learning the features on three layers (network, transport and application layer) in the small labeled data set (with thousands of instances), the Tri-net can automatically identify millions of online NATs. We evaluate this approach on the real-world dataset with more than 8 million online IoT devices, and the performance shows the precision and recall can be both up to \(92\%\). Moreover, we found 2, 511, 499 IoT devices connecting to the Internet via NAT, which account for one-third of the total. To our knowledge, this is the first successful attempt to automatically identify Internet-scale NATs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abt, S., Dietz, C., Baier, H., Petrović, S.: Passive remote source NAT detection using behavior statistics derived from NetFlow. In: Doyen, G., Waldburger, M., Čeleda, P., Sperotto, A., Stiller, B. (eds.) AIMS 2013. LNCS, vol. 7943, pp. 148–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38998-6_18

    Chapter  Google Scholar 

  2. Bellovin, S.M.: A technique for counting Natted hosts. In: Proceedings of ACM SIGCOMM Workshop on Internet Measurment (2002)

    Google Scholar 

  3. Beverly, R.: A robust classifier for passive TCP/IP fingerprinting. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 158–167. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24668-8_16

    Chapter  Google Scholar 

  4. Chen, D., Wang, W., Gao, W., Zhou, Z.: Tri-net for semi-supervised deep learning. In: Proceedings of International Joint Conference on Artificial Intelligence (2018)

    Google Scholar 

  5. Dittrich, D., Kenneally, E.: The Menlo Report: Ethical Principles Guiding Information and Communication Technology Research. Technical report, U.S. Department of Homeland Security (2012)

    Google Scholar 

  6. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search engine backed by Internet-wide scanning. In: Proceedings of 22nd Computer and Communications Security (2015)

    Google Scholar 

  7. Feng, X., Li, Q., Wang, H., Sun, L.: Acquisitional rule-based engine for discovering Internet-of-Thing devices. In: Proceedings of 27th USENIX Security Symposium (2018)

    Google Scholar 

  8. Gokcen, Y., Foroushani, V.A., Heywood, A.N.Z.: Can we identify NAT behavior by analyzing traffic flows. In: Proceedings of IEEE Symposium on Security and Privacy (2014)

    Google Scholar 

  9. Ishikawa, Y., Yamai, N., Okayama, K., Nakamura, M.: An identification method of PCs behind NAT router with proxy authentication on HTTP communication. In: Proceedings of Symposium on Applications and the Internet (2011)

    Google Scholar 

  10. Khatouni, A.S., Zhang, L., Aziz, K., Zincir, I., Zincirheywood, N.: Exploring NAT detection and host identification using machine learning. In: Proceedings of Conference on Network and Service Management (2019)

    Google Scholar 

  11. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE Trans. Dependable Secur. Comput. 2(2), 93–108 (2005)

    Article  Google Scholar 

  12. Komarek, T., Grill, M., Pevny, T.: Passive NAT detection using HTTP access logs. In: Proceedings of International Workshop on Information Forensics and Security (2016)

    Google Scholar 

  13. Li, R., Zhu, H., Xin, Y., Yang, Y., Wang, C.: Remote NAT detect algorithm based on support vector machine. In: Proceedings of Information Engineering and Computer Science (2009)

    Google Scholar 

  14. Maier, G., Schneider, F., Feldmann, A.: NAT usage in residential Broadband networks. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579, pp. 32–41. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19260-9_4

    Chapter  Google Scholar 

  15. Rapid7: Open data. https://opendata.rapid7.com/

  16. Rüth, J., Zimmermann, T., Hohlfeld, O.: Hidden treasures – recycling large-scale Internet measurements to study the Internet’s control plane. In: Choffnes, D., Barcellos, M. (eds.) PAM 2019. LNCS, vol. 11419, pp. 51–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15986-3_4

    Chapter  Google Scholar 

  17. Sun, W., Zhang, H., Cai, L., Yu, A., Shi, J., Jiang, J.: A novel device identification method based on passive measurement. Secur. Commun. Netw. 1–11 (2019)

    Google Scholar 

  18. Yan, Z., Lv, S., Zhang, Y., Zhu, H., Sun, L.: Remote fingerprinting on Internet-Wide printers based on neural network (2019)

    Google Scholar 

  19. Yang, K., Li, Q., Sun, L.: Towards automatic fingerprinting of IoT devices in the cyberspace. Comput. Netw. 148, 318–327 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R&D Program of China (Grant 2017YFC0820701), National Natural Science Foundation of China (Grant U1766215, 61702504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Z., Yu, N., Wen, H., Li, Z., Zhu, H., Sun, L. (2020). Detecting Internet-Scale NATs for IoT Devices Based on Tri-Net. In: Yu, D., Dressler, F., Yu, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2020. Lecture Notes in Computer Science(), vol 12384. Springer, Cham. https://doi.org/10.1007/978-3-030-59016-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59016-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59015-4

  • Online ISBN: 978-3-030-59016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics