Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FIBS: A Generic Framework for Classifying Interval-Based Temporal Sequences

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12393))

Included in the following conference series:

Abstract

We study the problem of classifying interval-based temporal sequences (IBTSs). Since common classification algorithms cannot be directly applied to IBTSs, the main challenge is to define a set of features that effectively represents the data such that classifiers can be applied. Most prior work utilizes frequent pattern mining to define a feature set based on discovered patterns. However, frequent pattern mining is computationally expensive and often discovers many irrelevant patterns. To address this shortcoming, we propose the FIBS framework for classifying IBTSs. FIBS extracts features relevant to classification from IBTSs based on relative frequency and temporal relations. To avoid selecting irrelevant features, a filter-based selection strategy is incorporated into FIBS. Our empirical evaluation on eight real-world datasets demonstrates the effectiveness of our methods in practice. The results provide evidence that FIBS effectively represents IBTSs for classification algorithms, which contributes to similar or significantly better accuracy compared to state-of-the-art competitors. It also suggests that the feature selection strategy is beneficial to FIBS’s performance.

This research was supported by funding from ISM Canada and the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sheetrit, E., Nissim, N., Klimov, D., Shahar, Y.: Temporal probabilistic profiles for sepsis prediction in the ICU. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2961–2969. ACM (2019)

    Google Scholar 

  2. Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 393–404. ACM, New York (2008)

    Google Scholar 

  3. Moskovitch, R., Shahar, Y.: Medical temporal-knowledge discovery via temporal abstraction. In: AMIA Annual Symposium Proceedings, pp. 452–456. American Medical Informatics Association (2009)

    Google Scholar 

  4. Mörchen, F., Fradkin, D.: Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 315–326. SIAM (2010)

    Google Scholar 

  5. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowl. Inf. Syst. 21(2), 133 (2009)

    Article  Google Scholar 

  6. Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016)

    Article  Google Scholar 

  7. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  8. Mörchen, F., Ultsch, A.: Optimizing time series discretization for knowledge discovery. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 660–665. ACM (2005)

    Google Scholar 

  9. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  10. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Workshop, K.D.D. (ed.) Seattle, pp. 359–370. AAAI Press, WA (1994)

    Google Scholar 

  11. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A temporal pattern mining approach for classifying electronic health record data. ACM Trans. Intell. Syste. Technol. (TIST) 4(4), 63 (2013)

    Google Scholar 

  12. Moskovitch, R., Shahar, Y.: Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc. 29(4), 871–913 (2014). https://doi.org/10.1007/s10618-014-0380-z

    Article  MathSciNet  Google Scholar 

  13. Kostakis, O., Papapetrou, P., Hollmén, J.: ARTEMIS: assessing the similarity of event-interval sequences. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 229–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_15

    Chapter  Google Scholar 

  14. Kotsifakos, A., Papapetrou, P., Athitsos, V.: IBSM: interval-based sequence matching. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 596–604. SIAM (2013)

    Google Scholar 

  15. Bornemann, L., Lecerf, J., Papapetrou, P.: STIFE: a framework for feature-based classification of sequences of temporal intervals. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_6

    Chapter  Google Scholar 

  16. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956. ACM (2009)

    Google Scholar 

  17. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. Algorithms and applications, Data classification, p. 37 (2014)

    Google Scholar 

  18. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  19. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Machine Learning Proceedings 1994, pp. 121–129. Elsevier (1994)

    Google Scholar 

  20. Yu, L., Liu, H.: Redundancy based feature selection for microarray data. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 737–742. ACM (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Mirbagheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammad Mirbagheri, S., Hamilton, H.J. (2020). FIBS: A Generic Framework for Classifying Interval-Based Temporal Sequences. In: Song, M., Song, IY., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2020. Lecture Notes in Computer Science(), vol 12393. Springer, Cham. https://doi.org/10.1007/978-3-030-59065-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59065-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59064-2

  • Online ISBN: 978-3-030-59065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics