Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simultaneous Estimation of X-Ray Back-Scatter and Forward-Scatter Using Multi-task Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Scattered radiation is a major concern impacting X-ray image-guided procedures in two ways. First, back-scatter significantly contributes to patient (skin) dose during complicated interventions. Second, forward-scattered radiation reduces contrast in projection images and introduces artifacts in 3-D reconstructions. While conventionally employed anti-scatter grids improve image quality by blocking X-rays, the additional attenuation due to the anti-scatter grid at the detector needs to be compensated for by a higher patient entrance dose. This also increases the room dose affecting the staff caring for the patient. For skin dose quantification, back-scatter is usually accounted for by applying pre-determined scalar back-scatter factors or linear point spread functions to a primary kerma forward projection onto a patient surface point. However, as patients come in different shapes, the generalization of conventional methods is limited. Here, we propose a novel approach combining conventional techniques with learning-based methods to simultaneously estimate the forward-scatter reaching the detector as well as the back-scatter affecting the patient skin dose. Knowing the forward-scatter, we can correct X-ray projections, while a good estimate of the back-scatter component facilitates an improved skin dose assessment. To simultaneously estimate forward-scatter as well as back-scatter, we propose a multi-task approach for joint back- and forward-scatter estimation by combining X-ray physics with neural networks. We show that, in theory, highly accurate scatter estimation in both cases is possible. In addition, we identify research directions for our multi-task framework and learning-based scatter estimation in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. In: Proceedings of the Eurographics (1987)

    Google Scholar 

  2. Badal, A., Badano, A.: Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Med. Phys. 36(11), 4878–4880 (2009)

    Article  Google Scholar 

  3. Baer, M., Kachelrieß, M.: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21), 6849–6867 (2012)

    Article  Google Scholar 

  4. Balter, S.: Methods for measuring fluoroscopic skin dose. Pediatr. Radiol. 36(2), 136–140 (2006). https://doi.org/10.1007/s00247-006-0193-3

    Article  Google Scholar 

  5. Bejarano, T., De Ornelas Couto, M., Mihaylov, I.: Head-and-neck squamous cell carcinoma patients with CT taken during pre-treatment, mid-treatment, and post-treatment dataset. The Cancer Imaging Archive (2018)

    Google Scholar 

  6. Chan, H.P., Doi, K.: Investigation of the performance of antiscatter grids: Monte Carlo simulation studies. Phys. Med. Biol. 27(6), 785–803 (1982)

    Article  Google Scholar 

  7. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  8. Freud, N., Duvauchelle, P., Pistrui-Maximean, S., Létang, J.M., Babot, D.: Deterministic simulation of first-order scattering in virtual x-ray imaging. Nucl. Instrum. Methods Phys. Res. B 222(1), 285–300 (2004)

    Article  Google Scholar 

  9. Fritz, S., Jones, A.K.: Guidelines for anti-scatter grid use in pediatric digital radiography. Pediatr. Radiol. 44(3), 313–321 (2013). https://doi.org/10.1007/s00247-013-2824-9

    Article  Google Scholar 

  10. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  11. Ingleby, H.R., Lippuner, J., Rickey, D.W., Li, Y.L., Elbakri, I.A.: Fast analytical scatter estimation using graphics processing units. J. X-Ray Sci. Technol. 23(2), 119–133 (2015)

    Article  Google Scholar 

  12. Johnson, P.B., Borrego, D., Balter, S., Johnson, K., Siragusa, D., Bolch, W.E.: Skin dose mapping for fluoroscopically guided interventions. Med. Phys. 38(10), 5490–5499 (2011)

    Article  Google Scholar 

  13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR), December 2014

    Google Scholar 

  14. Li, H., Mohan, R., Zhu, X.R.: Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging. Phys. Med. Biol. 53(23), 6729–6748 (2008)

    Article  Google Scholar 

  15. Loy Rodas, N., Padoy, N.: Seeing is believing: increasing intraoperative awareness to scattered radiation in interventional procedures by combining augmented reality, Monte Carlo simulations and wireless dosimeters. Int. J. Comput. Assist. Radiol. Surg. 10(8), 1181–1191 (2015). https://doi.org/10.1007/s11548-015-1161-x

    Article  Google Scholar 

  16. Maier, J., et al.: Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation. Med. Phys. 46(1), 238–249 (2019)

    Article  Google Scholar 

  17. Ohnesorge, B., Flohr, T., Klingenbeck-Regn, K.: Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur. Radiol. 9(3), 563–569 (1999). https://doi.org/10.1007/s003300050710

    Article  Google Scholar 

  18. Petoussi-Henss, N., Zankl, M., Drexler, G., Panzer, W., Regulla, D.: Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods. Phys. Med. Biol. 43(8), 2237–2250 (1998)

    Article  Google Scholar 

  19. Poludniowski, G., Evans, P.M., Hansen, V.N., Webb, S.: An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys. Med. Biol. 54(12), 3847–3864 (2009)

    Article  Google Scholar 

  20. Rana, V.K., Rudin, S., Bednarek, D.R.: A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system. Med. Phys. 43(9), 5131–5144 (2016)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Roser, P., et al.: Physics-driven learning of x-ray skin dose distribution in interventional procedures. Med. Phys. 46(10), 4654–4665 (2019)

    Article  Google Scholar 

  23. Roser, P., et al.: Fully-automatic CT data preparation for interventional x-ray skin dose simulation. In: Bildverarbeitung für die Medizin 2020. I, pp. 125–130. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-29267-6_26

  24. Roth, H., et al.: A new 2.5 d representation for lymph node detection in CT. The Cancer Imaging Archive (2018)

    Google Scholar 

  25. Rührnschopf, E.P., Klingenbeck, K.: A general framework and review of scatter correction methods in cone-beam CT. Part 2: scatter estimation approaches. Med. Phys. 38(9), 5186–5199 (2011)

    Article  Google Scholar 

  26. Rührnschopf, E.P., Klingenbeck, K.: A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: scatter compensation approaches. Med. Phys. 38(7), 4296–4311 (2011)

    Article  Google Scholar 

  27. Sun, M., Star-Lack, J.M.: Improved scatter correction using adaptive scatter kernel superposition. Phys. Med. Biol. 55(22), 6695–6720 (2010)

    Article  Google Scholar 

  28. Ubeda, C., Vano, E., Gonzalez, L., Miranda, P.: Influence of the antiscatter grid on dose and image quality in pediatric interventional cardiology x-ray systems. Catheter. Cardio. Inte. 82(1), 51–57 (2013)

    Article  Google Scholar 

  29. Wang, A., et al.: Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter - Part II: system modeling, scatter correction, and optimization. Med. Phys. 45(5), 1914–1925 (2018)

    Article  Google Scholar 

  30. Yao, W., Leszczynski, K.W.: An analytical approach to estimating the first order scatter in heterogeneous medium. II. A practical application. Med. Phys. 36(7), 3157–3167 (2009)

    Article  Google Scholar 

  31. Zhong, X., Strobel, N., Kowarschik, M., Fahrig, R., Maier, A.: Comparison of default patient surface model estimation methods. In: Bildverarbeitung für die Medizin 2017. I, pp. 281–286. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_64

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Roser .

Editor information

Editors and Affiliations

Ethics declarations

Disclaimer

The concepts and information presented in this paper are based on research and are not commercially available.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roser, P. et al. (2020). Simultaneous Estimation of X-Ray Back-Scatter and Forward-Scatter Using Multi-task Learning. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics