Abstract
Decompressive craniectomy (DC) is a common surgical procedure consisting of the removal of a portion of the skull that is performed after incidents such as stroke, traumatic brain injury (TBI) or other events that could result in acute subdural hemorrhage and/or increasing intracranial pressure. In these cases, CT scans are obtained to diagnose and assess injuries, or guide a certain therapy and intervention. We propose a deep learning based method to reconstruct the skull defect removed during DC performed after TBI from post-operative CT images. This reconstruction is useful in multiple scenarios, e.g. to support the creation of cranioplasty plates, accurate measurements of bone flap volume and total intracranial volume, important for studies that aim to relate later atrophy to patient outcome. We propose and compare alternative self-supervised methods where an encoder-decoder convolutional neural network (CNN) estimates the missing bone flap on post-operative CTs. The self-supervised learning strategy only requires images with complete skulls and avoids the need for annotated DC images. For evaluation, we employ real and simulated images with DC, comparing the results with other state-of-the-art approaches. The experiments show that the proposed model outperforms current manual methods, enabling reconstruction even in highly challenging cases where big skull defects have been removed during surgery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The source code of our project is publicly available at: http://gitlab.com/matzkin/deep-brain-extractor.
References
van Eijnatten, M., van Dijk, R., Dobbe, J., Streekstra, G., Koivisto, J., Wolff, J.: CT image segmentation methods for bone used in medical additive manufacturing. Med. Eng. Phys. 51, 6–16 (2018). https://doi.org/10.1016/j.medengphy.2017.10.008
Freyschlag, C.F., Gruber, R., Bauer, M., Grams, A.E., Thomé, C.: Routine postoperative computed tomography is not helpful after elective craniotomy. World Neurosurg. (2018). https://doi.org/10.1016/j.wneu.2018.11.079. http://www.sciencedirect.com/science/article/pii/S1878875018326299
Galgano, M., Toshkezi, G., Qiu, X., Russell, T., Chin, L., Zhao, L.R.: Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant. 26(7), 1118–1130 (2017). https://doi.org/10.1177/0963689717714102. pMID: 28933211
Herteleer, M., Ectors, N., Duflou, J., Calenbergh, F.V.: Complications of skull reconstruction after decompressive craniectomy. Acta Chirurgica Belgica 117(3), 149–156 (2016). https://doi.org/10.1080/00015458.2016.1264730
Hieu, L., et al.: Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyping J. 9(3), 175–186 (2003). https://doi.org/10.1108/13552540310477481
Huang, K.C., Liao, C.C., Xiao, F., Liu, C.C.H., Chiang, I.J., Wong, J.M.: Automated volumetry of postoperative skull defect on brain CT. Biomed. Eng. Appli. Basis Commun. 25(03), 1350033 (2013). https://doi.org/10.4015/s1016237213500336
Larrazabal, A.J., Martínez, C., Glocker, B., Ferrante, E.: Post–DAE: anatomically plausible segmentation via post-processing with denoising autoencoders. IEEE Trans. Med. Imaging (2020). https://doi.org/10.1109/TMI.2020.3005297
Larrazabal, A.J., Martinez, C., Ferrante, E.: Anatomical priors for image segmentation via post-processing with denoising autoencoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 585–593. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_65
Marstal, K., Berendsen, F., Staring, M., Klein, S.: Simpleelastix: a user-friendly, multi-lingual library for medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 134–142 (2016)
Moon, J.W., Hyun, D.K.: Decompressive craniectomy in traumatic brain injury: a review article. Korean J. Neurotrauma 13(1), 1 (2017). https://doi.org/10.13004/kjnt.2017.13.1.1
Patravali, J., Jain, S., Chilamkurthy, S.: 2D-3D fully convolutional neural networks for cardiac MR segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 130–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_14
Pawlowski, N., et al.: Unsupervised lesion detection in brain CT using Bayesian convolutional autoencoders (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sedney, C., Julien, T., Manon, J., Wilson, A.: The effect of craniectomy size on mortality, outcome, and complications after decompressive craniectomy at a rural trauma center. J. Neurosci. Rural Pract. 5(3), 212 (2014). https://doi.org/10.4103/0976-3147.133555
Seeram, E.: Computed Tomography - E-Book: Physical Principles, Clinical Applications, and Quality Control. Elsevier Health Sciences (2015). https://books.google.com.ar/books?id=DTCDCgAAQBAJ
Tanrikulu, L., et al.: The bigger, the better? about the size of decompressive hemicraniectomies. Clin. Neurol. Neurosurg. 135, 15–21 (2015). https://doi.org/10.1016/j.clineuro.2015.04.019
Xiao, F., et al.: Estimating postoperative skull defect volume from CT images using the ABC method. Clin. Neurol. Neurosurg. 114(3), 205–210 (2012). https://doi.org/10.1016/j.clineuro.2011.10.003. http://www.sciencedirect.com/science/article/pii/S0303846711003076
Acknowledgments
The authors gratefully acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research, and the support of UNL (CAID-PIC-50220140100084LI) and ANPCyT (PICT 2018-03907).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Matzkin, F. et al. (2020). Self-supervised Skull Reconstruction in Brain CT Images with Decompressive Craniectomy. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-59713-9_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59712-2
Online ISBN: 978-3-030-59713-9
eBook Packages: Computer ScienceComputer Science (R0)