Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recognition of Instrument-Tissue Interactions in Endoscopic Videos via Action Triplets

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Recognition of surgical activity is an essential component to develop context-aware decision support for the operating room. In this work, we tackle the recognition of fine-grained activities, modeled as action triplets \(\langle instrument, verb, target \rangle \) representing the tool activity. To this end, we introduce a new laparoscopic dataset, CholecT40, consisting of 40 videos from the public dataset Cholec80 in which all frames have been annotated using 128 triplet classes. Furthermore, we present an approach to recognize these triplets directly from the video data. It relies on a module called class activation guide, which uses the instrument activation maps to guide the verb and target recognition. To model the recognition of multiple triplets in the same frame, we also propose a trainable 3D interaction space, which captures the associations between the triplet components. Finally, we demonstrate the significance of these contributions via several ablation studies and comparisons to baselines on CholecT40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, T., Feußner, H., Navab, N.: Modeling and segmentation of surgical workflow from laparoscopic video. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 400–407. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_50

    Chapter  Google Scholar 

  2. Chakraborty, I., Elgammal, A., Burd, R.S.: Video based activity recognition in trauma resuscitation. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8 (2013)

    Google Scholar 

  3. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 381–389 (2018)

    Google Scholar 

  4. Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X., Jannin, P.: Automatic data-driven real-time segmentation and recognition of surgical workflow. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1081–1089 (2016). https://doi.org/10.1007/s11548-016-1371-x

    Article  Google Scholar 

  5. DiPietro, R., et al.: Segmenting and classifying activities in robot-assisted surgery with recurrent neural networks. Int. J. Comput. Assist. Radiol. Surg. 14(11), 2005–2020 (2019). https://doi.org/10.1007/s11548-019-01953-x

    Article  Google Scholar 

  6. DiPietro, R., et al.: Recognizing surgical activities with recurrent neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 551–558. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_64

    Chapter  Google Scholar 

  7. Funke, I., Jenke, A., Mees, S.T., Weitz, J., Speidel, S., Bodenstedt, S.: Temporal coherence-based self-supervised learning for laparoscopic workflow analysis. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 85–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_11

    Chapter  Google Scholar 

  8. Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8359–8367 (2018)

    Google Scholar 

  9. Jin, Y., et al.: Multi-task recurrent convolutional network with correlation loss for surgical video analysis. Med. Image Anal. 59, 101572 (2020)

    Article  Google Scholar 

  10. Katić, D., et al.: LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition. Int. J. Comput. Assist. Radiol. Surg. 10(9), 1427–1434 (2015). https://doi.org/10.1007/s11548-015-1222-1

    Article  Google Scholar 

  11. Kitaguchi, D., et al.: Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 1–8 (2019). https://doi.org/10.1007/s00464-019-07281-0

  12. Lo, B.P.L., Darzi, A., Yang, G.-Z.: Episode classification for the analysis of tissue/instrument interaction with multiple visual cues. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 230–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39899-8_29

    Chapter  Google Scholar 

  13. Loukas, C., Georgiou, E.: Smoke detection in endoscopic surgery videos: a first step towards retrieval of semantic events. Int. J. Med. Robot. Comput. Assist. Surg. 11(1), 80–94 (2015)

    Article  Google Scholar 

  14. Maier-Hein, L., et al.: Surgical data science: enabling next-generation surgery. Nat. Biomed. Eng. 1, 691–696 (2017)

    Article  Google Scholar 

  15. Malpani, A., Lea, C., Chen, C.C.G., Hager, G.D.: System events: readily accessible features for surgical phase detection. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1201–1209 (2016). https://doi.org/10.1007/s11548-016-1409-0

    Article  Google Scholar 

  16. Mondal, S.S., Sathish, R., Sheet, D.: Multitask learning of temporal connectionism in convolutional networks using a joint distribution loss function to simultaneously identify tools and phase in surgical videos. arXiv preprint arXiv:1905.08315 (2019)

  17. Neumuth, T., Strauß, G., Meixensberger, J., Lemke, H.U., Burgert, O.: Acquisition of process descriptions from surgical interventions. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 602–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11827405_59

    Chapter  Google Scholar 

  18. Nwoye, C.I., Mutter, D., Marescaux, J., Padoy, N.: Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos. Int. J. Comput. Assist. Radiol. Surg. 14(6), 1059–1067 (2019). https://doi.org/10.1007/s11548-019-01958-6

    Article  Google Scholar 

  19. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 401–417 (2018)

    Google Scholar 

  20. Shen, L., Yeung, S., Hoffman, J., Mori, G., Fei-Fei, L.: Scaling human-object interaction recognition through zero-shot learning. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1568–1576 (2018)

    Google Scholar 

  21. Twinanda, A.P., Alkan, E.O., Gangi, A., de Mathelin, M., Padoy, N.: Data-driven spatio-temporal RGBD feature encoding for action recognition in operating rooms. Int. J. Comput. Assist. Radiol. Surg. 10(6), 737–747 (2015). https://doi.org/10.1007/s11548-015-1186-1

    Article  Google Scholar 

  22. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2017)

    Article  Google Scholar 

  23. Xu, B., Wong, Y., Li, J., Zhao, Q., Kankanhalli, M.S.: Learning to detect human-object interactions with knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  24. Zia, A., Hung, A., Essa, I., Jarc, A.: Surgical activity recognition in robot-assisted radical prostatectomy using deep learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 273–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_32

    Chapter  Google Scholar 

  25. Zisimopoulos, O., et al.: DeepPhase: surgical phase recognition in CATARACTS videos. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 265–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_31

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by French state funds managed within the Investissements dAvenir program by BPI France (project CONDOR) and by the ANR (references ANR-11-LABX-0004 and ANR-16-CE33-0009). The authors would also like to thank the IHU and IRCAD research teams for their help with the data annotation during the CONDOR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinedu Innocent Nwoye .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 541 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nwoye, C.I. et al. (2020). Recognition of Instrument-Tissue Interactions in Endoscopic Videos via Action Triplets. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics