Abstract
Recognition of surgical activity is an essential component to develop context-aware decision support for the operating room. In this work, we tackle the recognition of fine-grained activities, modeled as action triplets \(\langle instrument, verb, target \rangle \) representing the tool activity. To this end, we introduce a new laparoscopic dataset, CholecT40, consisting of 40 videos from the public dataset Cholec80 in which all frames have been annotated using 128 triplet classes. Furthermore, we present an approach to recognize these triplets directly from the video data. It relies on a module called class activation guide, which uses the instrument activation maps to guide the verb and target recognition. To model the recognition of multiple triplets in the same frame, we also propose a trainable 3D interaction space, which captures the associations between the triplet components. Finally, we demonstrate the significance of these contributions via several ablation studies and comparisons to baselines on CholecT40.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blum, T., Feußner, H., Navab, N.: Modeling and segmentation of surgical workflow from laparoscopic video. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 400–407. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_50
Chakraborty, I., Elgammal, A., Burd, R.S.: Video based activity recognition in trauma resuscitation. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8 (2013)
Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 381–389 (2018)
Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X., Jannin, P.: Automatic data-driven real-time segmentation and recognition of surgical workflow. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1081–1089 (2016). https://doi.org/10.1007/s11548-016-1371-x
DiPietro, R., et al.: Segmenting and classifying activities in robot-assisted surgery with recurrent neural networks. Int. J. Comput. Assist. Radiol. Surg. 14(11), 2005–2020 (2019). https://doi.org/10.1007/s11548-019-01953-x
DiPietro, R., et al.: Recognizing surgical activities with recurrent neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 551–558. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_64
Funke, I., Jenke, A., Mees, S.T., Weitz, J., Speidel, S., Bodenstedt, S.: Temporal coherence-based self-supervised learning for laparoscopic workflow analysis. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 85–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01201-4_11
Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8359–8367 (2018)
Jin, Y., et al.: Multi-task recurrent convolutional network with correlation loss for surgical video analysis. Med. Image Anal. 59, 101572 (2020)
Katić, D., et al.: LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition. Int. J. Comput. Assist. Radiol. Surg. 10(9), 1427–1434 (2015). https://doi.org/10.1007/s11548-015-1222-1
Kitaguchi, D., et al.: Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 1–8 (2019). https://doi.org/10.1007/s00464-019-07281-0
Lo, B.P.L., Darzi, A., Yang, G.-Z.: Episode classification for the analysis of tissue/instrument interaction with multiple visual cues. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 230–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39899-8_29
Loukas, C., Georgiou, E.: Smoke detection in endoscopic surgery videos: a first step towards retrieval of semantic events. Int. J. Med. Robot. Comput. Assist. Surg. 11(1), 80–94 (2015)
Maier-Hein, L., et al.: Surgical data science: enabling next-generation surgery. Nat. Biomed. Eng. 1, 691–696 (2017)
Malpani, A., Lea, C., Chen, C.C.G., Hager, G.D.: System events: readily accessible features for surgical phase detection. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1201–1209 (2016). https://doi.org/10.1007/s11548-016-1409-0
Mondal, S.S., Sathish, R., Sheet, D.: Multitask learning of temporal connectionism in convolutional networks using a joint distribution loss function to simultaneously identify tools and phase in surgical videos. arXiv preprint arXiv:1905.08315 (2019)
Neumuth, T., Strauß, G., Meixensberger, J., Lemke, H.U., Burgert, O.: Acquisition of process descriptions from surgical interventions. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 602–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11827405_59
Nwoye, C.I., Mutter, D., Marescaux, J., Padoy, N.: Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos. Int. J. Comput. Assist. Radiol. Surg. 14(6), 1059–1067 (2019). https://doi.org/10.1007/s11548-019-01958-6
Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 401–417 (2018)
Shen, L., Yeung, S., Hoffman, J., Mori, G., Fei-Fei, L.: Scaling human-object interaction recognition through zero-shot learning. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1568–1576 (2018)
Twinanda, A.P., Alkan, E.O., Gangi, A., de Mathelin, M., Padoy, N.: Data-driven spatio-temporal RGBD feature encoding for action recognition in operating rooms. Int. J. Comput. Assist. Radiol. Surg. 10(6), 737–747 (2015). https://doi.org/10.1007/s11548-015-1186-1
Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2017)
Xu, B., Wong, Y., Li, J., Zhao, Q., Kankanhalli, M.S.: Learning to detect human-object interactions with knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Zia, A., Hung, A., Essa, I., Jarc, A.: Surgical activity recognition in robot-assisted radical prostatectomy using deep learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 273–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_32
Zisimopoulos, O., et al.: DeepPhase: surgical phase recognition in CATARACTS videos. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 265–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_31
Acknowledgements
This work was supported by French state funds managed within the Investissements dAvenir program by BPI France (project CONDOR) and by the ANR (references ANR-11-LABX-0004 and ANR-16-CE33-0009). The authors would also like to thank the IHU and IRCAD research teams for their help with the data annotation during the CONDOR project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nwoye, C.I. et al. (2020). Recognition of Instrument-Tissue Interactions in Endoscopic Videos via Action Triplets. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-59716-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59715-3
Online ISBN: 978-3-030-59716-0
eBook Packages: Computer ScienceComputer Science (R0)