Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Despite recent successes, the advances in Deep Learning have not yet been fully translated to Computer Assisted Intervention (CAI) problems such as pose estimation of surgical instruments. Currently, neural architectures for classification and segmentation tasks are adopted ignoring significant discrepancies between CAI and these tasks. We propose an automatic framework (AutoSNAP) for instrument pose estimation problems, which discovers and learns architectures for neural networks. We introduce 1) an efficient testing environment for pose estimation, 2) a powerful architecture representation based on novel Symbolic Neural Architecture Patterns (SNAPs), and 3) an optimization of the architecture using an efficient search scheme. Using AutoSNAP, we discover an improved architecture (SNAPNet) which outperforms both the hand-engineered i3PosNet and the state-of-the-art architecture search method DARTS.

D. Kügler and M. Uecker—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our code is available at https://github.com/MECLabTUDA/AutoSNAP.

  2. 2.

    We provide additional diagrams of the architectures in the Supplementary Materials.

References

  1. Bae, W., Lee, S., Lee, Y., Park, B., Chung, M., Jung, K.-H.: Resource optimized neural architecture search for 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 228–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_26

    Chapter  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Dong, N., Xu, M., Liang, X., Jiang, Y., Dai, W., Xing, E.: Neural architecture search for adversarial medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 828–836. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_92

    Chapter  Google Scholar 

  4. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey 20, 1–21 (2019). http://jmlr.org/papers/v20/18-598.html

  5. Hajj, H.A., et al.: CATARACTS: challenge on automatic tool annotation for cataract surgery. Med. IA 52, 24–41 (2019)

    Google Scholar 

  6. Kim, S., et al.: Scalable neural architecture search for 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 220–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_25

    Chapter  Google Scholar 

  7. Kügler, D., et al.: i3posnet: instrument pose estimation from x-ray in temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1137–1145 (2020). https://doi.org/10.1007/s11548-020-02157-4

  8. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR 2019 (2019). https://arxiv.org/pdf/1806.09055

  9. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization. In: Bengio, S., et al. (eds.) Advances in NeurIPS, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  10. Maier-Hein, L., et al.: Surgical data science for next-generation interventions. Nat. BioMed. Eng. 1(9), 691–696 (2017)

    Article  Google Scholar 

  11. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)

    Article  Google Scholar 

  12. Schipper, J., et al.: Navigation as a quality management tool in cochlear implant surgery. J. Laryngol. Otol. 118(10), 764–770 (2004)

    Article  Google Scholar 

  13. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2017)

    Article  Google Scholar 

  14. Unberath, M., et al.: Enabling machine learning in x-ray-based procedures via realistic simulation of image formation. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1517–1528 (2019). https://doi.org/10.1007/s11548-019-02011-2

    Article  Google Scholar 

  15. Vercauteren, T., Unberath, M., Padoy, N., Navab, N.: CAI4CAI: the rise of contextual artificial intelligence in computer assisted interventions. Proc. IEEE 108(1), 198–214 (2020). https://doi.org/10.1109/JPROC.2019.2946993

    Article  Google Scholar 

  16. Weng, Y., Zhou, T., Li, Y., Qiu, X.: NAS-Unet: neural architecture search for medical image segmentation. IEEE Access 7, 44247–44257 (2019)

    Article  Google Scholar 

  17. Yu, Q., et al.: C2FNAS: coarse-to-fine neural architecture search for 3D medical image segmentation (2019). https://arxiv.org/pdf/1912.09628

  18. Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: neural architecture search for volumetric medical image segmentation. In: 2019 International Conference on 3D Vision, pp. 240–248. IEEE Computer Society, Conference Publishing Services, Los Alamitos (2019)

    Google Scholar 

  19. Zoph, B., Vasudevan, V., Shlens, J., Le, V.Q.: Learning transferable architectures for scalable image recognition. In: Brown, M.S., et al. (eds.) CVPR Proceedings (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kügler .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 863 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kügler, D., Uecker, M., Kuijper, A., Mukhopadhyay, A. (2020). AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics