Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Bottom-Up Approach for Real-Time Mitral Valve Annulus Modeling on 3D Echo Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

3D+t Transesophageal Echocardiography (TEE) performs 4D scans of mitral valve (MV) morphology at frame rate providing real-time guidance for catheter-based interventions for MV repair and replacement. A key anatomical structure is the MV annulus, and live quantification of the dynamic annulus at acquisition rates 15 fps or higher have proven to be technically challenging. In this paper, we propose a bottom-up approach inspired by clinicians’ manual workflow for MV annulus modeling on 3D+t TEE images in real time. Specifically, we first detect annulus landmarks with clear 3D anatomical features via agents trained using Deep Reinforcement Learning. Leveraging the circular structure of the annulus, cross-annular planes are extracted and additional landmarks are then detected through 2D image-to-image networks on the 2D cutting planes. The complete 3D annulus is finally fitted through all detected landmarks using Splines. We validate the proposed approach on 795 3D+t TEE sequences with 1906 annotated frames, and achieve a speed 20 fps with a median accuracy 2.74 mm curve-to-curve error. Furthermore, device simulation is utilized to augment the training data that results in promising accuracy improvement on challenging echos with visible devices and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Each sequence or case refers to a TEE recording over time. It consists of 10 to 60 frames. Each frame is a 3D TEE image.

  2. 2.

    Courtesy of Dr Mani Vannan, Piedmont Heart Institute, Atlanta, GA.

  3. 3.

    [10] presents accuracy over 2D cutting-planes with weighted mean error as 2.0 mm, which the same metric in this work is 1.57 mm.

References

  1. Benjamin, E.J., Muntner, P., Bittencourt, M.S.: Heart disease and stroke statistics-2019 update: a report from the american heart association. Circulation 139(10), e56–e528 (2019)

    Article  Google Scholar 

  2. El Sabbagh, A., Reddy, Y.N., Nishimura, R.A.: Mitral valve regurgitation in the contemporary era. JACC: Cardiovasc. Imaging 11(4), 628–643 (2018)

    Google Scholar 

  3. Bax, J.J., et al.: Transcatheter interventions for mitral regurgitation. JACC: Cardiovasc. Imaging 12(10), 2029–2048 (2019)

    Google Scholar 

  4. Ionasec, R.I., et al.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-d cardiac CT and tee. IEEE Trans. Med. Imaging 29(9), 1636–1651 (2010)

    Article  Google Scholar 

  5. Voigt, I., et al.: Robust physically-constrained modeling of the mitral valve and subvalvular apparatus. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 504–511. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_62

    Chapter  Google Scholar 

  6. Schneider, R.J., Perrin, D.P., Vasilyev, N.V., Marx, G.R., Pedro, J., Howe, R.D.: Mitral annulus segmentation from four-dimensional ultrasound using a valve state predictor and constrained optical flow. Med. Image Anal. 16(2), 497–504 (2012)

    Article  Google Scholar 

  7. Pouch, A.M., et al.: Modeling the myxomatous mitral valve with three-dimensional echocardiography. Ann. Thorac. Surg. 102(3), 703–710 (2016)

    Article  Google Scholar 

  8. Graser, B., et al.: Using a shape prior for robust modeling of the mitral annulus on 4D ultrasound data. Int. J. Comput. Assist. Radiol. Surg. 9(4), 635–644 (2014). https://doi.org/10.1007/s11548-013-0942-3

    Article  Google Scholar 

  9. Voigt, I., et al.: Robust live tracking of mitral valve annulus for minimally-invasive intervention guidance. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 439–446. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_54

    Chapter  Google Scholar 

  10. Andreassen, B.S., Veronesi, F., Gerard, O., Solberg, A.H.S., Samset, E.: Mitral annulus segmentation using deep learning in 3D transesophageal echocardiography. IEEE J. Biomed. Health Inform. 24, 994–1003 (2019)

    Article  Google Scholar 

  11. Ghesu, F.C., et al.: Multi-scale deep reinforcement learning for real-time 3d-landmark detection in CT scans. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 176–189 (2017)

    Article  Google Scholar 

  12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  13. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)

    Google Scholar 

  14. Abbott Laboratories: Mitraclip clip delivery system: instructions for use. https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100009c.pdf (2013). Accessed 16 Mar 2020

  15. Alessandrini, M., et al.: A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: methodology and open-access database. IEEE Trans. Med. Imaging 34, 1436–1451 (2015)

    Article  Google Scholar 

  16. Gao, H., et al.: A fast convolution-based methodology to simulate 2-d/3-d cardiac ultrasound images. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 56, 404–409 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2020). A Bottom-Up Approach for Real-Time Mitral Valve Annulus Modeling on 3D Echo Images. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics