Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trajectories from Distribution-Valued Functional Curves: A Unified Wasserstein Framework

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Temporal changes in medical images are often evaluated along a parametrized function that represents a structure of interest (e.g. white matter tracts). By attributing samples along these functions with distributions of image properties in the local neighborhood, we create distribution-valued signatures for these functions. We propose a novel, comprehensive framework which models their temporal evolution trajectories. This is achieved under the unifying scheme of Wasserstein distance metric. The regression problem is formulated as a constrained optimization problem and solved using an alternating projection algorithm. The solution simultaneously preserves the functional characteristics of the curve, models the temporal change in distribution profiles and forces the estimated distributions to be valid. Hypothesis testing is applied in two ways using Wasserstein based test statistics. Validation is presented on synthetic data. Estimation of a population trajectory is shown using diffusion properties along DTI tracts from a healthy population of infants. Detection of delayed growth is shown using a case study.

Supported by NIH grants U54 EB005149 (NA-MIC), R01-HD055741-12 (ACE-IBIS), MH064065 (Conte Center), 1R01HD088125-01A1 (Infant DS), 1R01DA038215-01A1 (Infant Drug exposure). We thank Dr. John Gilmore, Dr. Martin Styner and team (University of North Carolina, Chapel Hill, USA) and Dr. Maria L. Escolar (University of Pittsburgh, USA) for providing the Diffusion-MRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bondell, H.D., Reich, B.J., Wang, H.: Noncrossing quantile regression curve estimation. Biometrika 97(4), 825–838 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bonneel, N., Peyré, G., Cuturi, M.: Wasserstein barycentric coordinates: histogram regression using optimal transport. ACM Trans. Graph. 35(4), 71–1 (2016)

    Article  Google Scholar 

  3. Boyd, S., Dattorro, J., et al.: Alternating projections. EE392o, Stanford University (2003)

    Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in hilbert spaces. In: Dykstra, R., Robertson, T., Wright, F.T. (eds.) Advances in Order Restricted Statistical Inference, pp. 28–47. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-9940-7_3

    Chapter  Google Scholar 

  6. De Leeuw, J.: Correctness of kruskal’s algorithms for monotone regression with ties. Psychometrika 42(1), 141–144 (1977)

    Article  MathSciNet  Google Scholar 

  7. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837–842 (1983)

    Article  MathSciNet  Google Scholar 

  8. Fan, J., Yao, Q., Tong, H.: Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83(1), 189–206 (1996)

    Article  MathSciNet  Google Scholar 

  9. Goldsmith, J., Crainiceanu, C.M., Caffo, B., Reich, D.: Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. J. Royal Stat. Soc.: Ser. C (Applied Statistics) 61(3), 453–469 (2012)

    MathSciNet  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

  11. Irpino, A., Verde, R.: Linear regression for numeric symbolic variables: a least squares approach based on wasserstein distance. Adv. Data Anal. Classification 9(1), 81–106 (2015)

    Article  MathSciNet  Google Scholar 

  12. Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: A novel representation for riemannian analysis of elastic curves in RN. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE (2007)

    Google Scholar 

  13. Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspectives 15(4), 143–156 (2001)

    Article  Google Scholar 

  14. Kundu, S., Kolouri, S., Erickson, K.I., Kramer, A.F., McAuley, E., Rohde, G.K.: Discovery and visualization of structural biomarkers from mri using transport-based morphometry. NeuroImage 167, 256–275 (2018)

    Article  Google Scholar 

  15. Mallasto, A., Feragen, A.: Learning from uncertain curves: the 2-wasserstein metric for gaussian processes. In: Advances in Neural Information Processing Systems, pp. 5660–5670 (2017)

    Google Scholar 

  16. Mueller, J., Jaakkola, T., Gifford, D.: Modeling persistent trends in distributions. J. Am. Stat. Assoc. 113(523), 1296–1310 (2018)

    Article  MathSciNet  Google Scholar 

  17. Peyré, G., Cuturi, M., et al.: Computational optimal transport. Found. Trends® Machine Learn. 11(5–6), 355–607 (2019)

    Google Scholar 

  18. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (2005). https://doi.org/10.1007/b98888

  19. Sharma, A., Durrleman, S., Gilmore, J.H., Gerig, G.: Longitudinal growth modeling of discrete-time functions with application to DTI tract evolution in early neurodevelopment. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1397–1400. IEEE (2012)

    Google Scholar 

  20. Sharma, A., et al.: Parametric regression scheme for distributions: analysis of DTI fiber tract diffusion changes in early brain development. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 559–562. IEEE (2014)

    Google Scholar 

  21. Sharma, A., et al.: Spatiotemporal modeling of distribution-valued data applied to DTI tract evolution in infant neurodevelopment. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 684–687. IEEE (2013)

    Google Scholar 

  22. Solomon, J.: Transportation Techniques for Geometric Data Processing. Ph.D. thesis, University of British Columbia (2015)

    Google Scholar 

  23. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011). https://doi.org/10.1109/TPAMI.2010.184

    Article  Google Scholar 

  24. Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis, vol. 475. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-4020-2

  25. Verde, A.R., et al.: UNC-UTAH na-mic framework for DTI fiber tract analysis. Front. Neuroinform. 7, 51 (2014)

    Article  Google Scholar 

  26. Yu, K., Jones, M.: Local linear quantile regression. J. Am. Stat. Assoc. 93(441), 228–237 (1998)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Z., et al.: Mapping population-based structural connectomes. NeuroImage 172, 130–145 (2018)

    Article  Google Scholar 

  28. Zhu, H., et al.: Fadtts: functional analysis of diffusion tensor tract statistics. NeuroImage 56(3), 1412–1425 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Gerig, G. (2020). Trajectories from Distribution-Valued Functional Curves: A Unified Wasserstein Framework. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics