Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Entropy Measurement of Concurrent Disorder

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2020)

Abstract

There is an imminent demand to understand the relationship between correctness and performance to deliver highly scalable multiprocessor programs. The motivation for this relationship is that relaxed correctness conditions provide performance benefits by reducing contention on data structure hot spots. Previous approaches propose metrics for characterizing relaxed correctness conditions that measure the number of method calls or state transitions to be shifted to arrive at a legal sequential history. The reason the existing metrics cannot measure the performance effects of a correctness condition is that they ignore delays in method calls since delayed responses from method calls yield correct behavior in even the strictest correctness conditions. We observe that method call delays can be captured by measuring the disorder in method call ordering using a metric from information theory known as entropy. We propose entropy as the first metric for multiprocessor programs that evaluates the trade-offs between correctness and performance. We measure entropy for a variety of concurrent stacks, queues, and sets from the Synchrobench micro-benchmark suite and correlate entropy, correctness, and performance. Our main insight is that lower entropy corresponds to better performance for strict correctness conditions and higher entropy corresponds to better performance for relaxed correctness conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    CAS accepts a memory location, expected value, and new value as parameters. If the dereferenced value of the memory location is equivalent to the expected value, then the memory location value is updated to the new value and true is returned. Otherwise, no change is made and false is returned.

References

  1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_29

    Chapter  Google Scholar 

  2. Bender, J., Lesani, M., Palsberg, J.: Declarative fence insertion. In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp. 367–385. ACM (2015)

    Google Scholar 

  3. Bianchi, A., Caivano, D., Lanubile, F., Visaggio, G.: Evaluating software degradation through entropy. In: Proceedings Seventh International Software Metrics Symposium, pp. 210–219. IEEE (2001)

    Google Scholar 

  4. Boehm, H.J., Adve, S.V.: Foundations of the c++ concurrency memory model. In: Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 68–78. ACM (2008)

    Google Scholar 

  5. Canfora, G., Cerulo, L., Di Penta, M., Pacilio, F.: An exploratory study of factors influencing change entropy. In: 2010 IEEE 18th International Conference on Program Comprehension, pp. 134–143. IEEE (2010)

    Google Scholar 

  6. Chockler, H., Farchi, E., Godlin, B., Novikov, S.: Cross-entropy based testing. In: Formal Methods in Computer Aided Design (FMCAD 2007), pp. 101–108. IEEE (2007)

    Google Scholar 

  7. Chockler, H., Farchi, E., Godlin, B., Novikov, S.: Cross-entropy-based replay of concurrent programs. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 201–215. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0_14

    Chapter  Google Scholar 

  8. Cook, V., Peterson, C., Painter, Z., Dechev, D.: Quantifiability: concurrent correctness from first principles. arXiv preprint arXiv:1905.06421 (2019)

  9. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization technique. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 257–266. ACM (2012)

    Google Scholar 

  10. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, pp. 50–59 (2004)

    Google Scholar 

  11. Fraser, K.: Practical lock-freedom. Technical report, University of Cambridge, Computer Laboratory (2004)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  13. Gramoli, V.: More than you ever wanted to know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms. In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2015), pp. 1–10. ACM (2015)

    Google Scholar 

  14. Haas, A., et al.: Distributed queues in shared memory: multicore performance and scalability through quantitative relaxation. In: Proceedings of the ACM International Conference on Computing Frontiers, pp. 1–9 (2013)

    Google Scholar 

  15. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceedings of the 31st International Conference on Software Engineering, pp. 78–88. IEEE Computer Society (2009)

    Google Scholar 

  16. Hassan, A.E., Holt, R.C.: The chaos of software development. In: Sixth International Workshop on Principles of Software Evolution, 2003. Proceedings, pp. 84–94. IEEE (2003)

    Google Scholar 

  17. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006). https://doi.org/10.1007/11795490_3

    Chapter  Google Scholar 

  18. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-parallelism tradeoff. In: Proceedings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 355–364. ACM (2010)

    Google Scholar 

  19. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 206–215. ACM (2004)

    Google Scholar 

  20. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of concurrent data structures. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of programming languages (POPL 2013), pp. 317–328. ACM (2013)

    Google Scholar 

  21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, Burlington (2012)

    Google Scholar 

  22. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

    Article  Google Scholar 

  23. Kapur, J.N., Kesavan, H.K.: Entropy optimization principles and their applications. In: Singh, V.P., Fiorentino, M. (eds.) Entropy and Energy Dissipation in Water Resources. Water Science and Technology Library, vol. 9, pp. 3–20. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-011-2430-0_1

  24. Kirsch, Christoph M., Lippautz, Michael, Payer, Hannes: Fast and scalable, lock-free k-FIFO queues. In: Malyshkin, Victor (ed.) PaCT 2013. LNCS, vol. 7979, pp. 208–223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39958-9_18

    Chapter  Google Scholar 

  25. Knuth, D.E.: The Art of Computer Programming: Volume 3: Sorting and Searching. Addison-Wesley Professional, Boston (1998)

    Google Scholar 

  26. Kumar, U., Kumar, V., Kapur, J.N.: Normalized measures of entropy. Int. J. Gener. Syst. 12(1), 55–69 (1986)

    Article  MathSciNet  Google Scholar 

  27. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

    Article  Google Scholar 

  28. Michael, M.M., Scott, M.L.: Simple, fast, and practical Non-Blocking and blocking concurrent queue algorithms. Tech. Rep. 600, 267–275 (1995)

    Google Scholar 

  29. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. ACM SIGPLAN Not. 48(8), 103–112 (2013). https://doi.org/10.1145/2517327.2442527

    Article  Google Scholar 

  30. Ou, P., Demsky, B.: Checking concurrent data structures under the c/c++11 memory model. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2017), January 2017

    Google Scholar 

  31. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99(1), 89–112 (1997)

    Article  Google Scholar 

  32. Rubinstein, R.Y., Kroese, D.P.: The Cross-entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer, Heidelberg (2013)

    Google Scholar 

  33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  34. Singh, V., Chaturvedi, K.: Entropy based bug prediction using support vector regression. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 746–751. IEEE (2012)

    Google Scholar 

  35. Treiber, R.K.: Systems programming: coping with parallelism. Technical Report RJ 5118, IBM Almaden Research Center, April 1986. San Jose, CA (1986)

    Google Scholar 

  36. Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-LSM relaxed priority queue. In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2015), vol. 50, no. 8, pp. 277–278 (2015)

    Google Scholar 

  37. Yang, C., Mellor-Crummey, J.: A wait-free queue as fast as fetch-and-add. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming - PPoPP 2016, pp. 1–13. ACM Press, New York (2016)

    Google Scholar 

  38. Zhang, D., Dechev, D.: A lock-free priority queue design based on multi-dimensional linked lists. IEEE Trans. Parallel Distrib. Syst. 27(3), 613–626 (2015)

    Article  Google Scholar 

  39. Zunino, L., Zanin, M., Tabak, B.M., Pérez, D.G., Rosso, O.A.: Forbidden patterns, permutation entropy and stock market inefficiency. Physica A 388(14), 2854–2864 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cook, V., Peterson, C., Painter, Z., Dechev, D. (2020). Entropy Measurement of Concurrent Disorder. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds) Quantitative Evaluation of Systems. QEST 2020. Lecture Notes in Computer Science(), vol 12289. Springer, Cham. https://doi.org/10.1007/978-3-030-59854-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59854-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59853-2

  • Online ISBN: 978-3-030-59854-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics