Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Segmentation to Label: Automatic Coronary Artery Labeling from Mask Parcellation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Automatic and accurate coronary artery labeling technique from CCTA can greatly reduce clinician’s manual efforts and benefit large-scale data analysis. Current line of research falls into two general categories: knowledge-based methods and learning-based techniques. However, no matter in which fashion it is developed, the formation of problem finally attributes to tree-structured centerline classification and requires hand-crafted features. Here, instead we present a new concise, effective and flexible framework for automatic coronary artery labeling by modeling the task as coronary artery parsing task. An intact pipeline is proposed and two paralleled sub-modules are further designed to consume volumetric image and unordered point cloud correspondingly. Finally, a self-contained loss is proposed to supervise labeling process. At experiment section, we conduct comprehensive experiments on collected 526 CCTA scans and exhibit stable and promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akinyemi, A., Murphy, S., Poole, I., Roberts, C.: Automatic labelling of coronary arteries. In: 2009 17th European Signal Processing Conference, pp. 1562–1566 (2009)

    Google Scholar 

  2. Cao, Q., et al.: Automatic identification of coronary tree anatomy in coronary computed tomography angiography. Int. J. Cardiovasc. Imaging 33(11), 1809–1819 (2017). https://doi.org/10.1007/s10554-017-1169-0

    Article  Google Scholar 

  3. Chalopin, C., Finet, G., Magnin, I.E.: Modeling the 3d coronary tree for labeling purposes. Med. Image Anal. 5(4), 301–315 (2001). https://doi.org/10.1016/S1361-8415(01)00047-0

    Article  Google Scholar 

  4. Gülsün, M.A., Funka-Lea, G., Zheng, Y., Eckert, M.: CTA coronary labeling through efficient geodesics between trees using anatomy priors. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 521–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_65

    Chapter  Google Scholar 

  5. Guo, Z., et al.: DeepCenterline: a multi-task fully convolutional network for centerline extraction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 441–453. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_34

    Chapter  Google Scholar 

  6. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. 76, 32–40 (2016)

    Article  Google Scholar 

  7. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’87, Association for Computing Machinery, New York, NY, USA, pp. 163–169 (1987), https://doi.org/10.1145/37401.37422

  8. Metz, C.T., Schaap, M., Weustink, A.C., Mollet, N.R., van Walsum, T., Niessen, W.J.: Coronary centerline extraction from ct coronary angiography images using a minimum cost path approach. Med. Phys. 36(12), 5568–5579 (2009)

    Article  Google Scholar 

  9. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 652–660. IEEE (2017)

    Google Scholar 

  10. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint, (2017) arXiv:1706.02413

  11. Sato, M., Bitter, I., Bender, M.A., Kaufman, A.E., Nakajima, M.: Teasar: tree-structure extraction algorithm for accurate and robust skeletons. In: Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, pp. 281–449 (2000)

    Google Scholar 

  12. Wu, D., et al.: A learning based deformable template matching method for automatic rib centerline extraction and labeling in ct images. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 980–987. IEEE (2012)

    Google Scholar 

  13. Wu, D., et al.: Automated anatomical labeling of coronary arteries via bidirectional tree LSTMs. Int. J. Comput. Assist. Radiol. Surg. 14(2), 271–280 (2018). https://doi.org/10.1007/s11548-018-1884-6

    Article  Google Scholar 

  14. Xia, Q., Yao, Y., Hu, Z., Hao, A.: Automatic 3D atrial segmentation from GE-MRIs using volumetric fully convolutional networks. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 211–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_23

    Chapter  Google Scholar 

  15. Yang, G., et al.: Automatic coronary artery tree labeling in coronary computed tomographic angiography datasets. Computing in Cardiology, pp. 109–112. IEEE (2011)

    Google Scholar 

  16. Zheng, Y., Tek, H., Funka-Lea, G.: Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 74–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_10

    Chapter  Google Scholar 

  17. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016). https://doi.org/10.1016/j.media.2016.02.006. http://www.sciencedirect.com/science/article/pii/S1361841516000219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 944 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z. et al. (2020). Segmentation to Label: Automatic Coronary Artery Labeling from Mask Parcellation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics