Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LDGAN: Longitudinal-Diagnostic Generative Adversarial Network for Disease Progression Prediction with Missing Structural MRI

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Predicting future progression of brain disorders is fundamental for effective intervention of pathological cognitive decline. Structural MRI provides a non-invasive solution to examine brain pathology and has been widely used for longitudinal analysis of brain disorders. Previous studies typically use only complete baseline MRI scans to predict future disease status due to the lack of MRI data at one or more future time points. Since temporal changes of each brain MRI are ignored, these methods would result in sub-optimal performance. To this end, we propose a longitudinal-diagnostic generative adversarial network (LDGAN) to predict multiple clinical scores at future time points using incomplete longitudinal MRI data. Specifically, LDGAN imputes MR images by learning a bi-directional mapping between MRIs of two adjacent time points and performing clinical score prediction jointly, thereby explicitly encouraging task-oriented image synthesis. The proposed LDGAN is further armed with a temporal constraint and an output constraint to model the temporal regularity of MRIs at adjacent time points and encourage the diagnostic consistency, respectively. We also design a weighted loss function to make use of those subjects without ground-truth scores at certain time points. The major advantage of the proposed LDGAN is that it can impute those missing scans in a task-oriented manner and can explicitly capture the temporal characteristics of brain changes for accurate prediction. Experimental results on both ADNI-1 and ADNI-2 datasets demonstrate that, compared with the state-of-the-art methods, LDGAN can generate more reasonable MRI scans and efficiently predict longitudinal clinical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)

    Article  Google Scholar 

  2. Yuan, L., Wang, Y., Thompson, P.M., Narayan, V.A., Ye, J.: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61(3), 622–632 (2012)

    Article  Google Scholar 

  3. Liu, M., Zhang, D., Shen, D.: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6), 1463–1474 (2016)

    Article  Google Scholar 

  4. Cheng, B., Liu, M., Shen, D., Li, Z., Zhang, D.: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 15(2), 115–132 (2017)

    Article  Google Scholar 

  5. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  6. Lei, B., Jiang, F., Chen, S., Ni, D., Wang, T.: Longitudinal analysis for disease progression via simultaneous multi-relational temporal-fused learning. Front. Aging Neurosci. 9(6), 1–6 (2017)

    Google Scholar 

  7. Liu, M., Zhang, J., Lian, C., Shen, D.: Weakly supervised deep learning for brain disease prognosis using MRI and incomplete clinical scores. IEEE Trans. Cybern. 50(7), 3381–3392 (2020)

    Article  Google Scholar 

  8. Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimer’s Dement. 9(5), e111–e194 (2013)

    Article  Google Scholar 

  9. Jiang, P., Wang, X., Li, Q., Jin, L., Li, S.: Correlation-aware sparse and low-rank constrained multi-task learning for longitudinal analysis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 23(4), 1450–1456 (2018)

    Article  Google Scholar 

  10. Ritter, K., Schumacher, J., Weygandt, M., Buchert, R., Allefeld, C., Haynes, J.D.: Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers. Alzheimer’s Dement.: Diagn. Assess. Dis. Monit. 1(2), 206–215 (2015)

    Google Scholar 

  11. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  12. Beason-Held, L.L., O Goh, J., An, Y., A Kraut, M., J O’Brien, R., Ferrucci, L.: A longitudinal study of brain anatomy changes preceding dementia in down syndromechanges in brain function occur years before the onset of cognitive impairment. J. Neurosci. 33(46), 18008–18014 (2013)

    Google Scholar 

  13. Jie, B., Liu, M., Liu, J., Zhang, D., Shen, D.: Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 64(1), 238–249 (2016)

    Article  Google Scholar 

  14. Pujol, J., et al.: A longitudinal study of brain anatomy changes preceding dementia in down syndrome. NeuroImage Clin. 18, 160–166 (2018)

    Article  Google Scholar 

  15. Jack, C., Bernstein, M., Fox, N., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  18. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  19. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inform. 21(6), 1607–1616 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang , Mingxia Liu or Dinggang Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 28 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ning, Z., Zhang, Y., Pan, Y., Zhong, T., Liu, M., Shen, D. (2020). LDGAN: Longitudinal-Diagnostic Generative Adversarial Network for Disease Progression Prediction with Missing Structural MRI. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics