Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel fMRI Representation Learning Framework with GAN

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Modeling the mapping between mind and brain is the key towards understanding how brain works. More specifically, the question can be formatted as modeling the posterior distribution of the latent psychological state given the observed brain, and the likelihood of brain observation given the latent psychological state. Generative adversarial network (GAN) is known for learning implicitly distributions over data which are hard to model with an explicit likelihood. To utilize GAN for the brain mapping modeling, we propose a novel representation learning framework to explore brain representations of different functions. With a linear regression, the learned representations are interpreted as functional brain networks (FBNs), which characterize the mapping between mind and brain. The proposed framework is evaluated on Human Connectome Project (HCP) task functional MRI (tfMRI) data. This novel framework proves that GAN can learn meaningful representations of tfMRI and promises better understanding of the brain function.

Q. Dong and N. Qiang ━ Equally contribution to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huettel, S.A., et al.: Functional Magnetic Resonance Imaging, vol. 1. Sinauer Associates Sunderland, MA (2004)

    Google Scholar 

  2. Shimony, J.S., et al.: Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad. Radiol. 16(5), 578–583 (2009)

    Article  Google Scholar 

  3. Smith, S.M., et al.: Correspondence of the brain’s functional architecture during activation and rest. Proc. Nat. Acad. Sci. 106(31), 13040–13045 (2009)

    Article  Google Scholar 

  4. Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Nat. Acad. Sci. 107(25), 11163–11170 (2010)

    Article  Google Scholar 

  5. Pessoa, L.: Understanding brain networks and brain organization. Phys. Rev. 11(3), 400–435 (2014)

    Google Scholar 

  6. Archbold, K.H., et al.: Neural activation patterns during working memory tasks and OSA disease severity: preliminary findings. J. Clin. Sleep Med. 5(01), 21–27 (2009)

    Article  Google Scholar 

  7. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  8. Binder, J.R., et al.: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. Neuroimage 54(2), 1465–1475 (2011)

    Article  Google Scholar 

  9. Dosenbach, N.U., et al.: A core system for the implementation of task sets. Neuron 50(5), 799–812 (2006)

    Article  Google Scholar 

  10. Beckmann, C.F., et al.: General multilevel linear modeling for group analysis in FMRI. Neuroimage 20(2), 1052–1063 (2003)

    Article  Google Scholar 

  11. McKeown, M.J.: Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. NeuroImage 11(1), 24–35 (2000)

    Article  Google Scholar 

  12. Beckmann, C.F., et al.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005)

    Article  Google Scholar 

  13. Calhoun, V.D., et al.: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1), S163–S172 (2009)

    Article  Google Scholar 

  14. Calhoun, V.D., et al.: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73 (2012)

    Article  Google Scholar 

  15. Jiang, X., et al.: Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex. Hum. Brain Mapp. 36(12), 5301–5319 (2015)

    Article  Google Scholar 

  16. Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE Trans. Biomed. Eng. 62(4), 1120–1131 (2015)

    Article  Google Scholar 

  17. Li, X., et al.: Multple-demand system identification and characterization via sparse representations of fMRI data. In: Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on. IEEE (2016)

    Google Scholar 

  18. Ge, F., et al.: Exploring intrinsic networks and their interactions using group wise temporal sparse coding. In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on. IEEE (2018)

    Google Scholar 

  19. Ge, F., et al.: Deriving ADHD biomarkers with sparse coding based network analysis. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE (2015)

    Google Scholar 

  20. Zhao, Y., et al.: Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder. NeuroImage Clin. 12, 23–33 (2016)

    Article  Google Scholar 

  21. Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L.: Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 58–66. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_8

    Chapter  Google Scholar 

  22. Huang, H., et al.: Modeling task fMRI data via mixture of deep expert networks. In: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on. IEEE (2018)

    Google Scholar 

  23. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551–1561 (2018)

    Article  Google Scholar 

  24. Zhao, Y., et al.: 4D modeling of fMRI data via spatio-temporal convolutional neural networks (ST-CNN). In: IEEE Transactions on Cognitive and Developmental Systems. IEEE (2019)

    Google Scholar 

  25. Li, Q., et al.: Simultaneous spatial-temporal decomposition of connectome-scale brain networks by deep sparse recurrent auto-encoders. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 579–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_45

    Chapter  Google Scholar 

  26. Wang, H., et al.: Recognizing brain states using deep sparse recurrent neural network. In: IEEE transactions on medical imaging. IEEE (2018)

    Google Scholar 

  27. Ng, A.Y., et al.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Advances in neural information processing systems, (2002)

    Google Scholar 

  28. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71

    Chapter  Google Scholar 

  29. Nie, Dong., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  30. Chen, X., et al.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in neural information processing systems, (2016)

    Google Scholar 

  31. Costa, P., et al.: Towards adversarial retinal image synthesis. arXiv preprint, (2017) arXiv:1701.08974

  32. Dimsdale-Zucker, H.R., et al.: Representational similarity analyses: a practical guide for functional MRI applications. In: Handbook of Behavioral Neuroscience, Elsevier. pp. 509–525 (2019)

    Google Scholar 

  33. Guibas, J.T., et al.: Synthetic medical images from dual generative adversarial networks. arXiv preprint, (2017) arXiv:1709.01872

  34. Radford, A., et al.: Unsupervised representation learning with deep convolutional generative adversarial networks. (2015)

    Google Scholar 

  35. Bengio, Y., et al.: Representation learning: a review and new perspectives. 35(8), 1798–1828 (2013)

    Google Scholar 

  36. Bengio, Y., et al.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  37. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  38. Jenkinson, M., et al.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  39. Kingma, D.P., et al.: Adam: a method for stochastic optimization. arXiv preprint, (2014) arXiv:1412.6980

  40. Arjovsky, M., et al.: Wasserstein gan, (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanzheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Q. et al. (2020). A Novel fMRI Representation Learning Framework with GAN. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics