Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Structural Connectivity Enriched Functional Brain Network Using Simplex Regression with GraphNet

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

The connectivity analysis is a powerful technique for investigating a hard-wired brain architecture as well as flexible, functional dynamics tied to human cognition. Recent multi-modal connectivity studies had the challenge of combining functional and structural connectivity information into one integrated network. In this paper, we proposed a simplex regression model with graph-constrained Elastic Net (GraphNet) to estimate functional networks enriched by structural connectivity in a biologically meaningful way with a low model complexity. Our model constructed the functional networks using sparse simplex regression framework and enriched structural connectivity information based on GraphNet constraint. We applied our model on the real neuroimaging datasets to show its ability for predicting a clinical score. Our results demonstrated that integrating multi-modal features could detect more sensitive and subtle brain biomarkers than using a single modality.

L. Shen—This work was supported by the National Institutes of Health [R01 EB022574] and National Science Foundation [IIS 1837964]. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  2. Damaraju, E., et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5, 298–308 (2014)

    Google Scholar 

  3. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  4. Glasser, M., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)

    Google Scholar 

  5. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  6. Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E.: Interpretable whole-brain prediction analysis with graphnet. NeuroImage 72, 304–321 (2013)

    Article  Google Scholar 

  7. Huang, H., et al.: A new sparse simplex model for brain anatomical and genetic network analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 625–632 (2013)

    Google Scholar 

  8. Kim, M., Won, J.H., Youn, J., Park, H.: Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson’s disease. IEEE Trans. Med. Imaging 39(1), 23–34 (2020)

    Article  Google Scholar 

  9. Li, K., Guo, L., Nie, J., Li, G., Liu, T.: Review of methods for functional brain connectivity detection using fMRI. Comput. Med. Imaging Graph. 33(2), 131–139 (2009)

    Article  Google Scholar 

  10. Li, Y., et al.: Structural connectivity guided sparse effective connectivity for MCI identification. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 299–306. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_35

    Chapter  Google Scholar 

  11. Marrelec, G., et al.: Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 32(1), 228–237 (2006)

    Article  Google Scholar 

  12. Nedley, N., Ramirez, F.E.: Nedley depression hit hypothesis: identifying depression and its causes. Am. J. Lifestyle Med. 10(6), 422–428 (2016)

    Article  Google Scholar 

  13. Park, B.Y., Seo, J., Park, H.: Functional brain networks associated with eating behaviors in obesity. Sci. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  14. Pervaiz, U., Vidaurre, D., Woolrich, M.W., Smith, S.M.: Optimising network modelling methods for fMRI. NeuroImage 211, 116604 (2020)

    Article  Google Scholar 

  15. Pineda-Pardo, J.A., et al.: Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. Neuroimage 101, 765–777 (2014)

    Article  Google Scholar 

  16. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  17. Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M.: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014)

    Article  Google Scholar 

  18. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004)

    Article  Google Scholar 

  19. Smith, S.M., et al.: Network modelling methods for fMRI. NeuroImage 54(2), 875–891 (2011)

    Article  Google Scholar 

  20. Stam, C.J., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex 17(1), 92–99 (2007)

    Article  Google Scholar 

  21. Wee, C.Y., et al.: Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59(3), 2045–2056 (2012)

    Article  Google Scholar 

  22. Werring, D., et al.: The structural and functional mechanisms of motor recovery: complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule. J. Neurol. Neurosurg. Psychiatry 65(6), 863–869 (1998)

    Article  Google Scholar 

  23. Zhang, Z., et al.: Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134(10), 2912–2928 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, M., Bao, J., Liu, K., Park, By., Park, H., Shen, L. (2020). Structural Connectivity Enriched Functional Brain Network Using Simplex Regression with GraphNet. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics